簡易檢索 / 詳目顯示

研究生: 吳靖宇
Wu, Ching-Yu
論文名稱: 應用網路拓樸整合電力潮流模型探討電力網路脆弱性及其連鎖故障行為
Application of Network Topology Integrating Power Flow Model to Explore Power Grid Vulnerability and Cascading Failure Behavior
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 89
中文關鍵詞: 連鎖故障電力網路脆弱性複雜網絡理論穩態交流電潮流模型
外文關鍵詞: Cascading Failure, Grid Vulnerability, Complex Network Theory, Steady-State AC Power Flow Model
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連鎖故障是歷次大停電事故的主要誘因之一,而脆弱線路對連鎖故障演化路徑的發展又起著極其關鍵的作用。為了在連鎖故障中識別電力網路潛在脆弱線路,基於複雜網絡理論和電力系統實際特性,以線路視在功率值為線路流量,並考量發電機實虛功上下限及匯流排電壓上下限,提出一種穩態交流電潮流連鎖故障模型。在此基礎上,從網絡全域和潮流功能特性兩個方面提出網路傳輸效能加權電抗係數及有效發電量作為電力網路脆弱性指標來辨識脆弱線路。最後通過3個IEEE標準測試系統對電力網路脆弱性進行評估,並與連鎖故障分析結果進行比較。結果表明基於電力網路脆弱性指標的脆弱性分析與連鎖故障所呈現的脆弱性有一定程度的關聯性。

    Cascading failures are one of the main causes of major blackout incidents. Vulnerable transmission lines play a crucial role in the evolution path of cascading failures. A steady-state AC power flow cascading failure model is proposed to identify potential vulnerable lines in an electrical grid during cascading failures, based on complex network theory and the actual characteristics of power systems. In this model, line power flow is treated as the line flow, and generator reactive power limits and bus voltage limits are considered. On this basis, from the perspectives of a global network and power flow functional characteristics, a network transmission performance-weighted reactance coefficient and effective generation capacity are proposed as indicators of grid vulnerability to identify vulnerable lines. Finally, the vulnerability of three IEEE standard test systems is evaluated using these indicators, and the results are compared with cascading failure analysis. The results show that the vulnerability analysis based on the proposed grid vulnerability indicators has a certain degree of correlation with the vulnerability manifested in cascading failures.

    摘要 i Extended Abstract ii 誌謝 vii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目的 3 1.4 本文架構 4 第二章 文獻探討 5 2.1複雜網路 5 2.2交流電穩態潮流 7 2.2.1牛頓-拉夫森迭代法 8 2.3 連鎖故障 11 2.4 PowSyBl 14 2.5電力網路架構 16 2.5.1發電機 18 2.5.2匯流排 19 2.5.3負載 21 2.5.4傳輸線 22 2.5.5 變壓器 24 第三章 網路傳輸效能加權電力網路係數 27 3.1 網路傳輸效能 27 3.1.1 Dijkstra 演算法 28 3.1.2過往脆弱性計算方式 31 3.2 電力網路係數 34 3.2.1 電抗係數 35 3.2.2 有效發電量 36 3.3 網路傳輸效能加權電抗係數及有效發電量 38 第四章 連鎖故障模型 40 4.1 前人研究架構介紹 40 4.2 新型連鎖故障建模 42 4.2.1 檢查孤立匯流排及孤立島嶼 43 4.2.2 負荷卸載策略 44 4.2.3 發電機上下限 45 4.2.4 傳輸線路超載檢查 46 4.2.5 匯流排電壓上下限 47 4.3 各項存活率指標 48 第五章 結果與討論 49 5.1 網路傳輸效能加權電力網路係數分析電網脆弱性結果 49 5.2 連鎖故障分析電力網路脆弱性結果 54 5.3兩者差異與比較 58 5.4總結 61 第六章 未來與展望 62 6.1 電力潮流動態模擬 62 6.2 最佳化潮流模擬 63 6.3 網路傳輸效能加權導納係數及有效發電量 64 參考文獻 65

    [1]. E. Zio and T. Aven, “Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?”, Energy Policy, Vol. 39, No. 10, pp. 6308-6320 (2011).
    [2]. J. Johansson, H. Hassel, E. Zio, “Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems”, Reliability Engineering & System Safety, Vol.120, pp. 27-38 (2013).
    [3]. A. Abedi, L. Gaudard, F. Romerio, “Review of major approaches to analyze vulnerability in power system”, Reliability Engineering & System Safety, Vol. 183, pp. 153-172 (2019).
    [4]. Y. Wang, C. Chen, J. Wang, R. Baldick, “ Research on resilience of power systems under natural disasters - A review”, IEEE Transactions on Power Systems, Vol. 31, No. 2, pp. 1604-1613 (2016).
    [5]. N. Bhusal, M. Abdelmalak, M. Kamruzzaman, M. Benidris, “ Power system resilience: Current practices, challenges, and future directions”, IEEE Access, Vol. 8, pp.18064-18086 (2020).
    [6]. The U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability, “Economic benefits of increasing electric grid resilience to weather outages”, Washington, D.C., USA (2013).
    [7]. Swedish Energy Agency, “Stormen Gudrun: Konsekvenser för nätbolag och samhälle”, Eskilstuna, Sweden (2005).
    [8]. W. Kuo, X. Zhu, “Some recent advances on importance measures in reliability”, IEEE Transactions on Reliability, Vol. 61, No. 2, pp.344-60 (2012).
    [9]. J.C. Whitson, J.E. Ramirez-Marquez, “Resiliency as a component importance measure in network reliability”, Reliability Engineering & System Safety, Vol. 94, No. 10, pp.1685-93 (2009).
    [10]. K. Barker, J.E. Ramirez-Marquez, C.M. Rocco, “Resilience-based network component importance measures”, Reliability Engineering & System Safety, Vol. 117, pp.89-97 (2013).
    [11]. M. Ouyang, L. Dueñas-Osorio, X. Min, “A three-stage resilience analysis framework for urban infrastructure systems”, Structural Safety, Vol. 36-37, pp. 23-31 (2012).
    [12]. Y.U. Qun, Q.I. Wang, N. Cao, “Control measures for cascading failures of interconnected power grids based on heterogeneous cellular automata”, Power System Protection and Control, Vol. 48, No. 7, pp.118-132 (2020).
    [13]. H. Zhou, H. Zhang, Z. Yang, “Multi-index comprehensive risk assessment of secondary system hidden faults”, Power System Protection and Control, Vol. 47, No. 9, pp. 120-127 (2019).
    [14]. Natural Resources Canada, U.S. Dept. of Energy, “Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations”, Ottawa, Canada and Washington, D.C., USA (2004).
    [15]. Electric Consumer Research Council, “The Economic Impacts of the August 2003 Blackout”, Washington, D.C., USA (2004).
    [16]. H.D. Sun, T. Xu, Q. Guo, “Analysis of the “August 9” blackout in the UK and its enlightenment to China's power grid”, Proceedings of the CSEE, Vol. 39, No. 21, pp. 6183-6192 (2019).
    [17]. National Grid ESO, “Technical report on the events of 9 August 2019”, London, UK (2019).
    [18]. X.G. Wei, S.B. Gao, D. Li, “Transmission line vulnerability analysis based on cascading failure network diagram and different attack methods”, Proceedings of the CSEE. Vol. 38, No. 2, pp.465-474 (2018).
    [19]. Y. Xu, A.J. Gurfinkel, P. A. Rikvold, “Architecture of the Florida power grid as a complex network, Physica A: Statistical Mechanics and its Applications, Vol. 401C, pp. 130-140 (2014).
    [20]. S. Forsberg, K. Thomas, M. Bergkvist, “Power grid vulnerability analysis using complex network theory: A topological study of the Nordic transmission grid”, Physica A: Statistical Mechanics and its Applications, Vol. 626, article id. 129072 (2023).
    [21]. D. Watts, S. Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature, Vol. 393, pp. 440-442 (1998).
    [22]. A.L. Barabási, R. Albert, “Emergence of Scaling in Random Networks”, Science, Vol. 286, No. 5439, pp. 509-512 (1999).
    [23]. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, “Complex networks: Structure and dynamics”, Physics Reports, Vol. 424, No. 4-5, pp. 175-308 (2006).
    [24]. S.H. Strogatz, “Exploring complex networks”, Nature, Vol. 410, pp. 268-276 (2001).
    [25]. R. Albert, A.L. Barabási, “Statistical mechanics of complex networks”, Reviews of Modern Physics, Vol. 74, No.1, pp. 47-97 (2002).
    [26]. S.N. Dorogovtesev, J.F.F. Mendes, “Evolution of networks”, Advances in Physics, Vol. 51, pp. 1079-1187 (2002).
    [27]. M.E.J. Newman, “The structure and function of complex networks”, SIAM Review, Vol. 45, pp. 167-256 (2003).
    [28]. D.J. Watts, “Small Worlds: The Dynamics of Networks between Order and Randomness’, Princeton University Press, Princeton, USA (1999).
    [29]. S. Bornholdt, H.G. Schuster, “Handbook of Graphs and Networks: From the Genome to the Internet”, Wiley-VCH, Weinheim, Germany (2003).
    [30]. R. Pastor-Satorras, A. Vespignani, “Evolution and Structure of the Internet: A Statistical Physics Approach”, Cambridge University Press, Cambridge, UK (2004).
    [31]. A.J. Wood, B.F. Wollenberg, “Power generation, operation, and control”, Wiley, Hoboken, USA (2013).
    [32]. J.D. Glover, M.S. Sarma, T. J. Overbye, “Power System Analysis and Design, SI Edition”, Cengage Learning Asia, Singapore (2012).
    [33]. W.F. Tinney, C.E. Hart, “Power flow solution by Newton's method”, IEEE Transactions on Power Systems, Vol. 86, No. 11, pp.1449-1460 (1967).
    [34]. T. Xiao, Y. Chen, J. Wang, S. Huang, W. Tong, T. He, "Exploration of Artificial-intelligence Oriented Power System Dynamic Simulators", Journal of Modern Power Systems and Clean Energy, Vol. 11, No. 2, pp. 401-411 (2023).
    [35]. K. Sun, U. Hou, W. Sun, “Power system control under cascading failures: Understanding, mitigation, and system restoration”, Wiley, Hoboken, USA (2019).
    [36]. J. Bialek, E. Ciapessoni, D. Cirio, “Benchmarking and validation of cascading failure analysis tools”, IEEE Transactions on Power Systems, Vol. 31, No. 6, pp. 4887-4900 (2016).
    [37]. W. Liao, S. Salinas, M. Li, “Cascading failure attacks in the power system: A stochastic game perspective”, IEEE Internet of Things Journal, Vol. 4, No. 6, pp. 2247-2259 (2017).
    [38]. S. Lei, C. Chen, Y. Li, “Resilient disaster recovery logistics of distribution systems: Co-optimize service restoration with repair crew and mobile power source dispatch”, IEEE Transactions on Smart Grid, Vol. 10, No. 6, pp. 6187-6202 (2019).
    [39]. P.D.H. Hines, I. Dobson, P. Rezaei, “Cascading power outages propagate locally in an influence graph that is not the actual grid topology”, IEEE Transactions on Power Systems, Vol. 32, No. 2, pp. 958-967 (2016).
    [40]. P. Hines, K. Balasubramaniam, E.C. Sanchez, “Cascading failures in power grids”, IEEE Potentials, Vol. 28, No. 5, pp. 24-30 (2009).
    [41]. M. Panteli, P. Mancarella, “Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events”, IEEE Systems Journal, Vol. 11, No. 3, pp. 1733-1742 (2017).
    [42]. G. Fu, “Integrated approach to assess the resilience of future electricity infrastructure networks to climate hazards”, IEEE Systems Journal, Vol. 12, No. 4, pp. 3169-3180 (2018).
    [43]. H. Sabouhi, A. Doroudi, M. Fotuhi-Firuzabad, M. Bashiri, “Electrical power system resilience assessment: A comprehensive approach”, IEEE Systems Journal, Vol. 14, No. 2, pp. 2643-2652 (2020).
    [44]. S. Poudel, A. Dubey, A. Bose, “Risk-based probabilistic quantification of power distribution system operational resilience”, IEEE Systems Journal, Vo. 14, No. 3, pp. 3506-3517 (2019).
    [45]. J. Bialek, “Benchmarking and validation of cascading failure analysis tools”, IEEE Transactions on Power Systems, Vol. 31, No. 6, pp. 4887-4900 (2016).
    [46]. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, “Catastrophic cascade of failures in interdependent networks”, Nature, Vol. 464, No. 7291, pp. 1025-1028 (2010).
    [47]. M. Rahnamay-Naeini, M.M. Hayat, “Cascading failures in interdependent infrastructures: An interdependent Markov-chain approach”, IEEE Transactions on Smart Grid, Vol. 7, No. 4, pp. 1997-2006 (2016).
    [48]. P. Hines, J. Apt, S. Talukdar, “Large blackouts in north america: Historical trends and policy implications”, Energy Policy, Vol. 37, No. 12, pp. 5249-5259 (2009).
    [49]. H. Guo, C. Zheng, H.H.C. Iu, T. Fernando, “A critical review of cascading failure analysis and modeling of power system”, Renewable and Sustainable Energy Reviews, vol. 80C, pp. 9-22 (2017).
    [50]. R. Rocchetta, E. Patelli, “Assessment of power grid vulnerabilities accounting for stochastic loads and model imprecision”, International Journal of Electrical Power & Energy Systems, Vol. 98, pp. 219-232 (2018).
    [51]. J. Bertsch, C. Carnal, D. Karlson, J. McDaniel, K. Vu, “Wide-area protection and power system utilization”, Proceedings of the IEEE, Vol. 93, No. 5, pp. 997-1003 (2005).
    [52]. S. Pahwa, C. Scoglio, S. Das, N. Schulz, “Load-shedding strategies for preventing cascading failures in power grid”, Electric Power Components and Systems, Vol. 41, No. 9, pp. 879-895 (2013).
    [53]. R. Faranda, A. Pievatolo, E. Tironi, “Load shedding: A new proposal”, Electric Power Components and Systems, Vol. 22, No. 4, pp. 2086-2093 (2007).
    [54]. F. Lin, “Worst-case load shedding in electric power networks”, IEEE Transactions on Control of Network Systems, Vol. 6, No. 3, pp. 1269-1277 (2019).
    [55]. Y. Zhang, S. Moura, “Stochastic optimal load shedding with heterogeneous load zones”, IEEE Power & Energy Society Innovative Smart Grid Technologies Conference Proceedings, pp. 1-5 (2020).
    [56]. A.M. Bolhasan, N.T. Kalantari, S.N. Ravadanegh, “Load Shedding, Emergency and Local Control”, Microgrid Architectures, Control Protection Methods, Springer, Cham, Germany, pp. 447-462 (2020).
    [57]. M. Begovic, D. Novosel, D. Karlsson, C. Henville, G. Michel, “Wide-area protection and emergency control”, Proceedings of the IEEE, Vol. 93, No. 5, pp. 876-891 (2005).
    [58]. The North American Electric Reliability Corporation, Standard IRO-006-4, Reliability Coordination-Transmission Loading Relief, Atlanta, USA (2007).
    [59]. W. Ju, “Modeling, simulation, and analysis of cascading outages in power systems”, Ph.D. dissertation, Department of Electrical Engineering and Computer Science, University of. Tennessee, Knoxville, USA (2018).
    [60]. X. Liu, Z. Li, “Revealing the impact of multiple solutions in DCOPF on the risk assessment of line cascading failure in OPA model”, IEEE Transactions on Power Systems, Vol. 31, No. 5, pp. 4159-4160 (2016).
    [61]. Z. Wang, A. Scaglione, R.J. Thomas, “Markov-transition model for cascading failures in power grids”, Proceedings of 2012 45th Hawaii International Conference System Sciences, pp. 2115-2124, Hawaii, USA (2012).
    [62]. J. Chen, S. Thorp, I. Dobson, “Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model”, International Journal of Electrical Power & Energy Systems, Vol. 27, No. 4, pp. 318-326 (2005).
    [63]. H. Dong, L. Cui, “System reliability under cascading failure models”, IEEE Transactions on Reliability, Vol. 65, No. 2, pp. 929-940 (2016).
    [64]. J.P. Guo, S.W. Huang, S.W. Mei, “Power system cascading failure load loss analysis method based on sequential importance sampling”, Power System Technology, Vol. 40, No. 10, pp. 3132-3139 (2016).
    [65]. P. Rezaei, P.D.H. Hines, M.J. Eppstein, “Estimating cascading failure risk with random chemistry”, IEEE Transactions on Power Systems, Vol. 30, No. 5, pp. 2726-2735 (2015).
    [66]. M. Ding, Y. Xiao, J.J. Zhang, “Power grid cascading failure risk assessment model based on accident chain and dynamic fault tree’, Proceedings of the CSEE, Vol. 35, No. 4, pp. 821-829 (2015).
    [67]. X.H. Xuan, Y. Zhou, X.F. Song, “Power system cascading fault chain identification method based on dynamic interactive quantitative analysis of system and components”, Power System Protection and Control, Vol. 46, No. 2, pp. 101-109 (2018).
    [68]. Q.M. Sun, L.B. Shi, D.J. Si, “Research on transmission grid risk assessment based on cascading failure accident chain search”, Power System Protection and Control, Vol. 45, No. 19, pp. 27-34 (2017).
    [69]. X. Zhang, C. Zhan, K.T. Chi, “Modeling the dynamics of cascading failures in power systems”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 7, No. 2, pp. 192-204 (2017).
    [70]. C. Zhan, K.T. Chi, K.T. Hi, M.A. Small, “A general stochastic model for studying time evolution of transition networks”, Physica A: Statistical Mechanics and its Applications, Vol. 464, pp. 198-210 (2016).
    [71]. B. Jin, X.Y. Xiao, J. Chen, “Cascading failure risk assessment considering protection failure and power grid dynamic balance characteristics”, Power System Protection and Control, Vol. 44, No. 8, pp.1-7 (2016).
    [72]. W.U. Chen, H.H. Teng, Q.W. Chun, “Research on power grid vulnerability identification method based on improved line efficiency”, Power Engineering Technology, Vol. 37, No. 5, pp. 64-68 (2018).
    [73]. J. Fang, C. Su, Z. Chen, “Power system structural vulnerability assessment based on an improved maximum flow approach”, IEEE Transactions on Smart Grid, Vol. 9, No. 2, pp. 777-785 (2018).
    [74]. Y. Koc, M. Warnier, R.E. Kooij, “A robustness metric for cascading failures by targeted attacks in power networks”, 2013 10th IEEE International Conference on Networking, Sensing and Control Proceedings, pp. 48-53, Evry, France (2013).
    [75]. B. Liu, Z. Li, X. Chen, “Recognition and vulnerability analysis of key nodes in power grid based on complex network centrality”, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 3, pp. 346-350 (2018).
    [76]. W. Fan, X. Zhang, S. Mei, “Vulnerable transmission line identification using ISH theory in power grids”, IET Generation Transmission & Distribution, Vol. 12, No. 4, pp. 1014-1020 (2018).
    [77]. J. Liu, Q. Xiong, W. Shi, “Evaluating the importance of nodes in complex networks’, Physica A: Statistical Mechanics and its Applications, Vol. 452, pp. 209-219 (2016).
    [78]. The Linux Foundation, registered trademarks of Power System Blocks, Retrieved from: https://www.powsybl.org/index.html (2024).
    [79]. The Linux Foundation, Building a network in node/breaker topology model, Retrieved from: https://www.powsybl.org/pages/documentation/developer/tutorials/topology.html (2024).
    [80]. The Linux Foundation, Grid exchange formats, Retrieved from: https://www.powsybl.org/pages/documentation/index.html#grid-model (2024).
    [81]. The Taiwan Electric Power Co., Ltd., Introduction to Taiwan Power System, Retrieved from: https://www.taipower.com.tw/tc/page.aspx?mid=211 (2024).
    [82]. J.C. Maxwell, "On Physical Lines of Force", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 21, No. 139, pp.161-175 (1861).
    [83]. M. Faraday, "Experimental Researches in Electricity", Philosophical Transactions, Vol. 122, pp.125-162 (1832).
    [84]. The Linux Foundation, “Grid Model”, Retrieved from: https://www.powsybl.org/pages/documentation/grid/model/ (2024).
    [85]. 吳明竑、王振勇、吳清敏,”水力發電開發現況、面臨環境與未來展望”,土木水利,第42卷,第4期,46-51頁 (2015年)。
    [86]. 國際能源署,”風能與太陽能”,2022年世界能源展望報告,68-69頁 (2022年)。
    [87]. A. Shamoon, A. Haleem, S. Bahl, M. Javaid, S.B. Garg, R.C. Sharma, J. Garg, “Environmental impact of energy production and extraction of materials-a review”, Materials Today: Proceedings, Vol.57, No. 2, pp. 936-941 (2022).
    [88]. Y.L. Tu, P.S. Liu, T.J. Chang, “Feasibility Analysis of Integrating Wind Energy and Solar Energy as a Hybrid Energy System in Taiwan”, Journal of Taiwan Agricultural Engineering, Vol.55, No. 1, pp. 53-64 (2009).
    [89]. 經濟部,111年度全國電力資源供需報告,1-22頁(2022年)。
    [90]. Simens AG, Data Formats Reference Manual Power Flow, Sequence, Optimal Power Flow, and GIC data formats PSS® E 34.4, Munich, Germany (2018).
    [91]. 中國特高壓輸電「獨步全球」實現超遠距離高效能輸電,摘自: https://www.ourchinastory.com/zh/2924/%E4%B8%AD%E5%9C%8B%E7%89%B9%E9%AB%98%E5%A3%93%E8%BC%B8%E9%9B%BB%E3%80%8C%E7%8D%A8%E6%AD%A5%E5%85%A8%E7%90%83%E3%80%8D%20%E5%AF%A6%E7%8F%BE%E8%B6%85%E9%81%A0%E8%B7%9D%E9%9B%A2%E9%AB%98%E6%95%88%E8%83%BD%E8%BC%B8%E9%9B%BB (2024年) 。
    [92]. 謝小榮、姜齊榮,柔性交流輸電系統的原理與應用:第2版,清華大學出版社,北京,中國 (2014年)。
    [93]. The Linux Foundation, “Transformer Data”, Retrieved from: https://www.powsybl.org/pages/documentation/grid/formats/psse.html (2024).
    [94]. P. Cuffe, “A comparison of malicious interdiction strategies against electrical networks”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 7, No. 2, pp. 205-217 (2017).
    [95]. L. Cuadra, S. Salcedo-Sanz, J. Del-Ser, S. Jiménez-Fernández, Z.W. Geem, “A critical review of robustness in power grids using complex networks concepts”, Energies, Vol. 8, No. 9, pp. 9211-9265 (2015).
    [96]. Å.J. Holmgren, “Using graph models to analyze the vulnerability of electric power networks”, Risk Analysis, Vol. 26, No. 4, pp. 955-969 (2006).
    [97]. D. Zhou, F. Hu, S. Wang, J. Chen, “Power network robustness analysis based on electrical engineering and complex network theory”, Physica A: Statistical Mechanics and its Applications, Vol. 564, No.5, article id 125540 (2021).
    [98]. B. Xie, X. Tian, L. Kong, W. Chen, “The vulnerability of the power grid structure: A system analysis based on complex network theory”, Sensors, Vol. 21, No. 21, pp. 7097-7125 (2021).
    [99]. E. Bompard, E. Pons, D. Wu, “Extended topological metrics for the analysis of power grid vulnerability”, IEEE Systems Journal, Vol. 6, No. 3, pp. 481-487 (2012).
    [100]. S. Forsberg, K. Thomas, M. Bergkvist, “Power grid vulnerability analysis using complex network theory: A topological study of the Nordic transmission grid”, Physica A: Statistical Mechanics and its Applications, Vol. 626, article id 129072 (2023).
    [101]. A.S. Kumar, I. Kouveliotis-Lysikatos, E. Nycander, J. Olauson, M. Marin, M. Amelin, L. Soder, “Open nodal power flow model of the nordic power system”, 2021 IEEE Madrid PowerTech Proceedings, pp. 1-6 (2021).
    [102]. M. Saleh, Y. Esa, A. Mohamed, “Applications of complex network analysis in electric power systems”, Energies, Vol. 11, No. 6, pp. 1381-1397 (2018).
    [103]. P. Panigrahi, S. Maity, “Structural vulnerability analysis in small-world power grid networks based on weighted topological model”, International Transactions on Electrical Energy Systems, Vol. 30, pp. 1-18 (2020).
    [104]. H.U. Funian, L.G. Chen, J. Chen, “Cascading failure modeling and robustness evaluation based on AC power flow”, Power System Protection and Control, Vol. 49, No. 18, pp. 35-43 (2021).
    [105]. D. Si, Q. Sun, L. Shi, Y. Qian, W. Qian, "Analysis of cascading failure considering load-shedding strategy and failure correlation", 2016 International Conference on Probabilistic Methods Applied to Power Systems Proceedings, pp. 1-6 (2016).

    無法下載圖示 校內:2029-07-29公開
    校外:2029-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE