簡易檢索 / 詳目顯示

研究生: 林玫均
Lin, Mei-Jyun
論文名稱: 條件限制下深度生成模型於奈米光子結構反向設計之比較研究
A Comparative Study of Deep Generative Models under Design Constraints for Nanophotonic Inverse Design
指導教授: 藍永強
Lan , Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 101
中文關鍵詞: 條件生成反向設計深度生成模型奈米光子結構forward model cVAEcGAN卷積神經網路 穿透光譜
外文關鍵詞: VAE, deep learn models, GAN, inverse design, forward model
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米光子結構的反向設計任務具有高度非線性與一對多解空間的特性,傳統優化方法在多樣性與效率上往往受限。因此,本研究引入生成式深度學習模型以實現同時具備結構多樣性與光學性能要求的結構生成。本文聚焦於 Taigao Ma 等人所提出之論文的 Task 2,針對自由形狀矽結構在 400–680 nm 可見光範圍內之穿透光譜進行反向設計。為進一步探討生成模型於實際應用需求中的效能,本研究選擇條件變異自編碼器(Conditional Variational Autoencoder, cVAE)與條件生成對抗網路(Conditional Generative Adversarial Network, cGAN)兩種典型模型進行比較。
    模型訓練完成後,分別進行三種生成任務:(1)直接以原始訓練資料進行生成;(2)篩選出 gap 值落在 250–350 nm 範圍內之結構;(3)篩選出在 520–560 nm 波段內具有穿透率高於 0.45 的光譜峰值之結構。共計產出六組實驗數據,加上forward model 的聯合訓練,有效提升模型對於物理可實現性的掌握度。
    最後針對模型的光譜準確性、多樣性與條件滿足率進行評估與分析。實驗結果顯示,VAE 模型在無條件生成任務中表現穩定,具備良好的光譜準確度與運算效率,但在限制條件下較易出現 decoder 模式收斂的現象,導致生成結構趨於單一,降低了多樣性。相較之下,GAN 模型即使在嚴格條件下仍保有高結構多樣性與良好光譜匹配能力,適合應用於需滿足特定設計條件的場景。
    本研究成果可為未來實務應用中的條件式光學設計提供具體依據,並作為不同生成模型選擇上的參考指標。

    This paper addresses the challenges of inverse design in nanophotonic structures, where high structural degrees of freedom lead to high computational costs and low search efficiency. Traditional methods rely heavily on parameter sweeps and optical simulations, which become increasingly inefficient when dealing with free-form structures. To overcome these limitations, we adopt generative deep learning models to perform conditional inverse design. These models can directly generate structural images and periodic parameters (gap) from a target transmission spectrum. A pretrained forward neural network is also employed to verify the optical consistency of the generated results.
    We develop two types of generative models: the Variational Autoencoder (VAE) and the Generative Adversarial Network (GAN), and evaluate them under three constraint settings: unconditional generation, gap-constrained generation, and spectrum-constrained generation. Model performance is systematically analyzed using metrics such as SSIM, RMSE, and structural irregularity.
    Experimental results show that the VAE performs stably in the unconditional task, offering high spectral accuracy and fast inference. However, under stricter constraints, the decoder tends to collapse to a limited set of patterns, resulting in reduced diversity of generated structures. In contrast, the GAN model maintains high structural diversity even under strong constraints and achieves better spectral alignment, making it more suitable for applications that require meeting specific optical design criteria.
    In summary, this study demonstrates the effectiveness of deep generative models for the inverse design of free-form nanophotonic structures. Depending on the task requirements, one can choose between VAE and GAN to balance generation efficiency and structural flexibility.

    考試合格證明 ii 中文摘要 iii 英文摘要 iv 致謝 xii 目錄 xiv 圖目錄 xvii 表目錄 xx 1 第一章緒論 1 1-1 研究動機 1 1-2 奈米光子結構設計挑戰與生成模型的應用 3 1-3 論文架構 4 2 第二章奈米光子結構與資料處理 6 2-1 自由形狀結構穿透濾波器之設計任務 6 2-1-1 設計任務說明與結構設定 6 2-1-2 光譜模擬方法:嚴格耦合波分析(RCWA) 8 2-2 TE與TM模態之理論基礎 9 2-2-1 TE模態(Transverse Electric)說明 10 2-2-2 TM模態(Transverse Magnetic)說明 11 2-3 訓練資料格式與處理方法 12 2-3-1 結構圖像與 gap 數值編碼 13 2-3-2 Spectrum 光譜資料處理與通道設計 15 2-4 生成條件設定與篩選準則 17 2-4-1 gap 限制條件設定 18 2-4-2 Spectrum 限制條件設定 18 3 第三章深度生成模型建構與訓練流程 21 3-1 神經網路計算與原理 21 3-1-1 前向傳播演算法(Feed-forward) 22 3-1-2 反向傳播演算法(Backpropagation) 24 3-1-3 卷積神經網路(CNN) 25 3-2 生成式模型原理與比較 27 3-2-1 Variational Autoencoder(VAE)架構與訓練流程 27 3-2-2 Generative Adversarial Network(GAN)架構與訓練流程 30 3-3 forward model 結構與應用方式 33 3-4 損失函數設計與訓練策略說明 35 3-5 模型訓練流程與資料分配 37 3-6 六組生成實驗流程說明 42 3-6-1 無條件原始資料生成(VAE / GAN) 42 3-6-2 gap 條件限制生成(VAE / GAN) 43 3-6-3 spectrum 條件限制生成(VAE / GAN) 44 4 第四章模型評估與實驗結果分析 46 4-1 評估指標說明與實驗設定 46 4-1-1 通過率(符合條件樣本比例) 46 4-1-2 光譜準確度(RMSE / MAE) 47 4-1-3 結構多樣性(Irregularity 分佈) 48 4-2 VAE 模型之結果分析 49 4-2-1 原始資料生成結果分析 49 4-2-2 GAP 條件篩選生成結果分析 53 4-2-3 Spectrum 條件篩選生成結果分析 57 4-3 GAN 模型之結果分析 63 4-3-1 原始資料生成結果分析 63 4-3-2 GAP 條件篩選生成結果分析 67 4-3-3 Spectrum 條件篩選生成結果分析 71 4-4 VAE 與 GAN 模型整體比較 75 4-4-1 各條件下通過率與準確性比較 76 4-4-2 多樣性與分布範圍之對照 77 5 第五章結論與展望 79 參考文獻 80

    [1] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vučković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nature Photonics, vol. 12, no. 11, pp. 659–670, 2018.
    [2] D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics, vol. 5, no. 4, pp. 1365–1369, 2018.
    [3] X. Han, Z. Y. Fan, Z. Y. Liu, C. Li, and L. J. Guo, “Inverse design of metasurface optical filters using deep neural network with high degrees of freedom,” InfoMat, vol. 3, no. 4, pp. 432–442, 2021.
    [4] T. Ma, Z. Liu, Y. Liu, and A. Majumdar, “Benchmarking deep learning-based models on nanophotonic inverse design problems,” Opto-Electronic Science, vol. 1, p. 210012, 2022.
    [5] J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano, vol. 13, no. 8, pp. 8872–8878, 2019.
    [6] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Letters, vol. 18, no. 10, pp. 6570–6576, 2018.
    [7] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” JOSA, vol. 71, no. 7, pp. 811–818, 1981.
    [8] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. Cambridge University Press, 1999.
    [9] S. A. Maier, Plasmonics: Fundamentals and Applications. Springer, 2007.
    [10] “Spectral sensitivity,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Spectral_sensitivity
    [11] K. Suzuki, “Artificial neural networks - methodological advances and biomedical applications,” IntechOpen, pp. 3–68, 2011.
    [12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.
    [13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Representations (ICLR), 2015.
    [14] Z. Li, F. Liu, W. Yang, and S. Peng, “A survey of convolutional neural networks: analysis, applications, and prospects,” Unpublished.
    [15] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc. Int. Conf. Learn. Representations (ICLR), 2014.
    [16] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
    [17] T. Ma, Z. Liu, Y. Liu, and A. Majumdar, “Supplementary information for ‘Benchmarking deep learning-based models on nanophotonic inverse design problems’,” Opto-Electronic Science, vol. 1, p. 210012, 2022.
    [18] A. Malkiel et al., “Plasmonic nanostructure design and characterization via deep learning,” Light: Science & Applications, vol. 7, 2018.
    [19] J. Jiang et al., “Deep neural networks for the evaluation and design of photonic devices,” Nature Reviews Materials, vol. 7, pp. 679–695, 2022.
    [20] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights into Imaging, vol. 9, pp. 611–629, 2018.
    [21] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE