簡易檢索 / 詳目顯示

研究生: 陳健豪
Chen, Chan-Hua
論文名稱: 製備功能性金奈米粒子並應用於免疫沈澱法
Fabrication and Application of Functionalized Gold Nanoparticles for Immunoprecipitation
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 金奈米粒子免疫沉澱抗體雌激素受體
外文關鍵詞: estrogen receptor, antibody, immunoprecipitation
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為製備金奈米探針,做為免疫沉澱法的工具,針對乳癌
    細胞MCF-7 中的雌激素受體阿爾法(estrogen receptor alpha; ERα)進行免疫沉澱抓取實驗。首先在金奈米探針製備方面,先用2-iminothiolane 修飾蛋白質G,使蛋白質G 上的胺官能基硫醇化,再利用硫醇化的蛋白質G 對金奈米粒子表面進行自組裝修飾,使得金奈米粒子表面修飾一層硫醇化蛋白質G。因為蛋白質G 可與抗體的結晶片段(fragment crystallizable;Fc)形成鍵結,因此便可在硫醇化蛋白質G 表面再修飾一層具有方向性的雌激素受體抗體(anti-estrogen receptor alpha; anti-ERα ),製備完成的探針應用於免疫抓取。鍵結在探針上的蛋白質G 與抗體之間需再經過共價交聯,使得抗體不會因為從探針上脫離而造成後續質譜偵測的干擾。
    製備條件經系統性最佳化,最後定量出約1.4 μg 蛋白質G 以及4.52 μg 抗體在100 μL 金奈米粒子探針上。所合成好的金奈米探針與傳統免疫沉澱法所用的瓊脂糖凝膠珠體進行專一性抓取能力比較,結果顯示金奈米探針擁有可比凝於瓊脂糖凝膠珠體的專一性與回收率,值得注意的是,金奈米探針在抵抗非專一吸附能力上有更好的效率,這在質譜偵測上尤其重要。最後金奈米探針成功從500 μg 乳癌全細胞中利用蛋白質體結合質譜的方法分離出ERα。

    In this study, we fabricated and characterized gold nanoparticle (AuNPs)-based immuno probes and further applied the synthesized probes for imunoprecipitation against estrogen receptor alpha (ERα) in MCF-7 breast
    cancer cells. We first utilized 2-iminothiolane to modify the amine groups of protein G in order to form a thiol linker, which could subsequently bind to the surface of AuNPs. Anti-ERα antibody was then bound to the probe
    surface via protein G through its Fc domain to form well orientated antibodies on the probe for immuno-capturing. The immobilized antibodies were further cross linked with protein G to minimize the leakage of antibodies that
    could interfere the subsequent detection by mass spectrometry (MS). The fabrication conditions were systematically optimized and the final probe was
    characterized to have 1.4 μg protein G and 4.52 μg anti-estrogen receptor alpha on 100 μL AuNP. Compared to agarose beads which are conventionally used in immunoprecipitation, our data showed that AuNPs-based probe has comparable specificity and recovery rate but possesses higher resistance against non-specific binding, which, however, is very crucial for MS detection. Finally, we demonstrated that from as little as 500 μ g total proteins of MCF-7 whole cell lysate, ERα could be successfully isolated and identified by proteomics approach using MS
    detection.

    中文摘要…………………………………………………………………I 英文摘要 ………………………………………………………………II 致謝……………………………………………………………………III 第一章 序論……………………………………………………………1 1.1 蛋白質體學…………………………………………………………1 1.2 奈米粒子耦合蛋白質………………………………………………3 1.3 免疫沉澱法…………………………………………………………3 1.3.1 磁奈米粒子應用於免疫沉澱法…………………………………7 1.3.2 金奈米粒子應用於免疫沉澱法…………………………………8 1.4 本實驗目標與動機…………………………………………………8 第二章 實驗……………………………………………………………12 2.1 藥品與儀器 ………………………………………………………12 2.1.1 藥品 ……………………………………………………………12 2.1.2 儀器 ……………………………………………………………12 2.2 金奈米探針製備 …………………………………………………12 2.2.1 金奈米粒子製備 ………………………………………………12 2.2.2 硫醇化蛋白質G 製備 …………………………………………13 2.2.3 探針製備 ………………………………………………………14 2.3 細胞培養與萃取 …………………………………………………15 2.4 免疫沉澱法 ………………………………………………………16 2.5 西方墨點法分析(Western Blotting) …………………………16 2.6 考馬斯藍染色(Coomassie Blue) ………………………………18 2.7 銀染色法(Silver Stain) ………………………………………18 2.8 三氯乙酸沉澱以胰蛋白脢消化 …………………………………19 2.9 奈米級液相層析結合質譜分析法 ………………………………19 第三章 結果與討論……………………………………………………21 3.1 蛋白質G 與抗體飽和曲線 ………………………………………21 3.1.1 蛋白質飽和曲線 ………………………………………………21 3.1.2 抗體飽和曲線 …………………………………………………25 3.2 金奈米粒子探針UV 圖 …………………………………………28 3.3 DMP 交聯試劑的影響 ……………………………………………30 3.4 細胞新鮮度對免疫沉澱的影響 …………………………………33 3.5 金奈米正探針與金奈米負探針比較 ……………………………36 3.6 瓊脂糖凝膠珠體與金奈米探針 …………………………………40 3.7 金奈米探針抓取MCF-7 細胞中ERα ……………………………46 第四章 結論……………………………………………………………48 參考文獻 ………………………………………………………………50 附錄 ……………………………………………………………………55

    [1] Dhingra, V., Gupta, M., Andacht, T., Fu, Z. F., New frontiers in proteomics research: A perspective. International Journal of Pharmaceutics 2005, 299, 1-18.
    [2] Rogers, S., Girolami, M., Kolch, W., Waters, K. M., et al., Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 2008, 24, 2894-2900.
    [3] Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., et al., From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio-Technology 1996, 14, 61-65.
    [4] Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., et al., A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nature Biotechnology 2003, 21, 315-318.
    [5] Brand, M., Ranish, J. A., Kummer, N. T., Hamilton, J., et al., Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nature Structural & Molecular Biology 2004, 11, 73-80.
    [6] Himeda, C. L., Ranish, J. A., Angello, J. C., Maire, P., et al., Quantitative proteomic identification of Six4 as the trex-binding factor in the muscle creatine kinase enhancer. Molecular and Cellular Biology 2004, 24, 2132-2143.
    [7] Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., Mann, M., Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 2005, 308, 1472-1477.
    [8] Ranish, J. A., Hahn, S., Lu, Y., Yi, E. C., et al., Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nature Genetics 2004, 36, 707-713.
    [9] Ranish, J. A., Yi, E. C., Leslie, D. M., Purvine, S. O., et al., The study of macromolecular complexes by quantitative proteomics. Nature Genetics 2003, 33, 349-355.
    [10] Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., et al., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316, 1160-1166.
    [11] Wepf, A., Glatter, T., Schmidt, A., Aebersold, R., Gstaiger, M., Quantitative interaction proteomics using mass spectrometry. Nature Methods 2009, 6, 203-205.
    [12] Ajuh, P., Kuster, B., Panov, K., Zomerdijk, J. C. B. M., et al., Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. Embo Journal 2000, 19, 6569-6581.
    [13] Boersema, P. J., Aye, T. T., van Veen, T. A. B., Heck, A. J. R., Mohammed, S., Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 2008, 8, 4624-4632.
    [14] Wang, Y., Cortez, D., Yazdi, P., Neff, N., et al., BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes & Development 2000, 14, 927-939.
    [15] Phizicky, E. M., Fields, S., Protein-Protein Interactions - Methods for Detection and Analysis. Microbiological Reviews 1995, 59, 94-123.
    [16] Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W. H., et al., The molecular architecture of the nuclear pore complex. Nature 2007, 450, 695-701.
    [17] Hu, M. H., Qian, L. P., Brinas, R. P., Lymar, E. S., Hainfeld, J. F., Assembly of nanoparticle-protein binding complexes: From monomers to ordered arrays. Angewandte Chemie-International Edition 2007, 46, 5111-5114.
    [18] Boisselier, E., Astruc, D., Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews 2009, 38, 1759-1782.
    [19] Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., et al., Biological applications of quantum dots. Biomaterials 2007, 28, 4717-4732.
    [20] Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J., Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics 2003, 36, R167-R181.
    [21] Pankhurst, Q. A., Thanh, N. K. T., Jones, S. K., Dobson, J., Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics
    D-Applied Physics 2009, 42, -.
    [22] Katz, E., Willner, I., Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie-International Edition 2004, 43, 6042-6108.
    [23] Thanh, N. T. K., Green, L. A. W., Functionalisation of nanoparticles for biomedical applications. Nano Today 2010, 5, 213-230.
    [24] Podsiadlo, P., Paternel, S., Rouillard, J. M., Zhang, Z. F., et al., Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir 2005, 21, 11915-11921.
    [25] Wang, S. H., Sato, S., Kimura, K., Preparation of
    hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution. Chemistry of Materials 2003, 15, 2445-2448.
    [26] Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., et al., Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Materials Chemistry and Physics 2007, 103, 168-175.
    [27] Ho, K. C., Tsai, P. J., Lin, Y. S., Chen, Y. C., Using biofunctionalized nanoparticles to probe pathogenic bacteria. Analytical Chemistry 2004, 76, 7162-7168.
    [28] Lin, P. C., Chou, P. H., Chen, S. H., Liao, H. K., et al., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
    [29] Vila, A. M., de Arrilucea, P. R., Pelaez, E. C., Gago-Martinez, A., Development of a new magnetic beads-based immunoprecipitation strategy for proteomics analysis. J Proteomics, 73, 1491-1501.
    [30] Nishimura, K., Hasegawa, M., Ogura, Y., Nishi, T., et al., 4 degrees C preparation of ferrite nanoparticles having protein molecules immobilized on their surfaces. Journal of Applied Physics 2002, 91, 8555-8556.
    [31] Polito, L., Monti, D., Caneva, E., Delnevo, E., et al., One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide-alkyne click reaction sequence. Chem Commun (Camb) 2008, 621-623.
    [32] Thaxton, C. S., Georganopoulou, D. G., Mirkin, C. A., Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 2006, 363, 120-126.
    [33] Aubin-Tam, M. E., Hamad-Schifferli, K., Structure and function of nanoparticle-protein conjugates. Biomed Mater 2008, 3, 034001.
    [34] Grabar, K. C., Freeman, R. G., Hommer, M. B., Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry 1995, 67, 735-743.
    [35] Green, N. S., Reisler, E., Houk, K. N., Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. Protein Science 2001, 10, 1293-1304.
    [36] Li, J. J., LeRiche, T., Tremblay, T. L., Wang, C., et al., Application of microfluidic devices to proteomics research - Identification of trace-level protein digests and affinity capture of target peptides. Molecular & Cellular Proteomics 2002, 1, 157-168.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE