| 研究生: |
許泰瑛 Hsu, Tai-Ying |
|---|---|
| 論文名稱: |
阿拉伯芥中核醣體脅迫的關鍵轉錄因子ANAC082調控細胞增殖 Cell proliferation control by ANAC082, a key transcription factor of nucleolar stress responses, in Arabidopsis thaliana |
| 指導教授: |
大林祝
Ohbayashi, Iwai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 阿拉伯芥 、核仁脅迫 、細胞增殖 |
| 外文關鍵詞: | Arabidopsis, nucleolar stress, cell proliferation |
| 相關次數: | 點閱:44 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物自行遠離逆境環境的能力,必須直面各種生物和非生物逆境,因此植物演化出了完善的分子機制來應對,當環境對植物不利時就會產生不同類型的細胞內脅迫反應來忍受與適應環境。核仁脅迫是核糖體生合成或功能缺陷誘發的逆境反應,由於核醣體對生物的重要性,核仁脅迫反應往往非常劇烈,在動物研究中,營養缺乏、缺氧或突變都會誘發核仁脅迫。受益於癌症生物學的研究,核仁脅迫在動物中已經被廣泛的研究,動物細胞核仁脅迫反應的主要途徑涉及腫瘤抑制因子 p53 及其不穩定因子 MDM2,但在植物中沒有 p53 和 MDM2 的同源物,唯一被發表過的關鍵調節因子NAC 轉錄家族成員 ANAC082,然而這一植物特異性通路的詳細分子機制在很大程度上是未知的。
為了分析核仁脅迫對植物細胞增殖的影響,我們使用突變體root initiation defective 3 (rid3) 與兩種化學試劑5-fluorouracil(5-FU)和puromycin(Puro)作為核仁脅迫的誘導劑。我首先測試了化學誘導劑,rRNA 前處理抑制劑 5-FU 和阻斷翻譯的化學物質 Puro 會抑制植物主根的生長和癒傷組織的形成,並且此兩種誘導劑都能上調 ANAC082p::GUS 的表達水平。在化學誘導組別的qPCR結果中顯示了三種NAC轉錄因子家族成員的大量表達包括ANAC044、ANAC085和ANAC103,以及三種在DNA受損脅迫中上調的CDK抑制因子包括SMR5、SMR7和KRP6也在核仁脅迫條件下上調,而DNA修復相關基因在表達量的調控則並未觀察到。
為了深入了解ANAC082調控的下游基因,我們制作了β-estradiol誘導的ANAC082過表達植株 (ANAC082-OX),從表型觀察在誘導了ANAC082表達量後,根生長、芽再生和癒傷組織形成均在核仁脅迫條件下受到抑制。為了進一步確定核仁脅迫過程中調控的下游基因,我對過表達株進行RNA測序以及 RT-qPCR檢查過表達株的 DNA 受損脅迫和細胞周期調控相關基因表達的變化。RNA-seq和RT-qPCR分析顯示,在ANAC082-OX中,多個NAC轉錄因子和CDK抑制因子基因的表達水平升高,這與化學物質處理(5-FU和Puro)以及與核糖體相關的突變(rid2和rid3)中觀察到的表達模式類似。此外,在ANAC082-OX中,DNA修復相關基因的表達水平未顯著上調,這與其他核仁脅迫條件下的情況相同。
綜上所述,雖然ANAC082介導的核仁脅迫路徑和DNA損傷脅迫路徑部分共享調控細胞周期的下游事件,但它們可能是獨立的信號傳遞途徑。
Plants are sessile organisms that face various biotic and abiotic stress conditions. To adapt to the fluctuating environment, plants have developed unique stress response mechanisms. Various types of intracellular stresses occur when conditions are unfavorable for plants. Nucleolar stress is one of the most effective stresses induced by defects in ribosome biogenesis or function. In animals, nucleolar stress is induced by nutritional starvation, hypoxia, or some ribosome-related mutations, which is widely studied in cancer biology. The main pathway of the nucleolar stress response in animal cells involves the tumor suppressor p53 and its destabilizer MDM2. In plants, although there is no ortholog for p53 and MDM2, ANAC082, a member of the NAC transcription family of Arabidopsis thaliana, was identified as a pivotal regulator in the nucleolar stress response pathway. However, the detailed molecular mechanism of this plant-specific pathway is largely unknown.
To analyze the effects of nucleolar stress on plant cell proliferation, we used one mutation, root initiation defective 3 (rid3), and two chemical reagents, 5-fluorouracil (5-FU) and puromycin (Puro), as stress inducers. I first focused on these chemicals. 5-FU, an inhibitor of pre-rRNA processing, and Puro, a chemical that blocks translation, repressed root growth, and callus formation. These drugs upregulated the expression level of ANAC082p::GUS, which means they work as nucleolar stress inducers in plants. The qPCR analysis showed that, in the treatment with chemicals, the expression levels of three genes encoding NAC transcription factors, ANAC044, ANAC085, and ANAC103, and three genes of CDK inhibitors, SMR5, SMR7, and KRP6, which are all upregulated in DNA damage stress, were also elevated, whereas almost no alteration in expression of DNA repair-related genes was observed.
For insight into the downstream of ANAC082, we made the β-estradiol-inducible overexpression line of ANAC082 (ANAC082-OX). The phenotypic analysis showed repression of primary root growth, shoot regeneration, and callus formation in the inductive conditions. To identify the downstream genes regulated under nucleolar stress, we carried out RNA sequencing (RNA-seq) analysis with this inducible line. Also, I performed RT-qPCR and checked the genes related to DNA damage response and cell cycle regulation. Both RNA-seq and RT-qPCR showed similar gene expression patterns, such as elevated levels of genes of several NAC transcription factors and CDK inhibitors, in ANAC082-OX to those in the treatment with chemicals (5-FU and Puro), in the ribosome-related mutations (rid2 and rid3). Furthermore, the expression levels of DNA repair-related genes were not significantly elevated in ANAC082-OX, which is also the same as in other nucleolar stress conditions.
In summary, the ANAC082-mediated nucleolar stress pathway and the DNA damage stress pathway are possibly independent signaling pathways although they partially share the downstream events to regulate the cell cycle.
Aida, M, T Ishida, H Fukaki, H Fujisawa, and M Tasaka. 1997. 'Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant', The Plant Cell, 9: 841-57.
Balazadeh, Salma, Hamad Siddiqui, Annapurna D Allu, Lilian P Matallana‐Ramirez, Camila Caldana, Mohammad Mehrnia, Maria‐Inés Zanor, Barbara Köhler, and Bernd Mueller‐Roeber. 2010. 'A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt‐promoted senescence', The Plant Journal, 62: 250-64.
Ben-Shem, Adam, Nicolas Garreau de Loubresse, Sergey Melnikov, Lasse Jenner, Gulnara Yusupova, and Marat Yusupov. 2011. 'The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution', Science, 334: 1524-29.
Bhat, Krishna P, Koji Itahana, Aiwen Jin, and Yanping Zhang. 2004. 'Essential role of ribosomal protein L11 in mediating growth inhibition‐induced p53 activation', The EMBO Journal, 23: 2402-12.
Boulon, S., B. J. Westman, S. Hutten, F. M. Boisvert, and A. I. Lamond. 2010. 'The nucleolus under stress', Mol Cell, 40: 216-27.
Cheng, Tsai-Ying, and G. L. Hagen. 1971. 'Ribosomal RNA precursor synthesis in tobacco tissue culture', Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 228: 503-08.
Dai, M. S., Y. Jin, J. R. Gallegos, and H. Lu. 2006. 'Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc', Neoplasia, 8: 630-44.
Dai, M. S., and H. Lu. 2004. 'Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5', J Biol Chem, 279: 44475-82.
de la Cruz, J., K. Karbstein, and J. L. Woolford, Jr. 2015. 'Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo', Annu Rev Biochem, 84: 93-129.
De Schutter, Kristof, Jérôme Joubès, Toon Cools, Aurine Verkest, Florence Corellou, Elena Babiychuk, Els Van Der Schueren, Tom Beeckman, Sergeï Kushnir, and Dirk Inze. 2007. 'Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint', The Plant Cell, 19: 211-25.
De Veylder, Lieven, Tom Beeckman, Gerrit TS Beemster, Luc Krols, Franky Terras, Isabelle Landrieu, Els Van Der Schueren, Sara Maes, Mirande Naudts, and Dirk Inzé. 2001. 'Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis', The Plant Cell, 13: 1653-68.
Deisenroth, C., and Y. Zhang. 2010. 'Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway', Oncogene, 29: 4253-60.
Fraser, R S, and J Creanor. 1975. 'The mechanism of inhibition of ribonucleic acid synthesis by 8-hydroxyquinoline and the antibiotic lomofungin', Biochemical Journal, 147: 401-10.
Garapati, Prashanth, Gang-Ping Xue, Sergi Munné-Bosch, and Salma Balazadeh. 2015. 'Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades', Plant Physiology, 168: 1122-39.
Golomb, Lior, Sinisa Volarevic, and Moshe Oren. 2014. 'p53 and ribosome biogenesis stress: The essentials', FEBS Letters, 588: 2571-79.
Guérinier, Thomas, Laurine Millan, Pierre Crozet, Céline Oury, François Rey, Benoit Valot, Chantal Mathieu, Jean Vidal, Michael Hodges, and Martine Thomas. 2013. 'Phosphorylation of p27 KIP 1 homologs KRP 6 and 7 by SNF 1‐related protein kinase–1 links plant energy homeostasis and cell proliferation', The Plant Journal, 75: 515-25.
Henras, A. K., C. Plisson-Chastang, M. F. O'Donohue, A. Chakraborty, and P. E. Gleizes. 2015. 'An overview of pre-ribosomal RNA processing in eukaryotes', Wiley Interdiscip Rev RNA, 6: 225-42.
Holmberg Olausson, K., M. Nistér, and M. S. Lindström. 2012. 'p53 -Dependent and -Independent Nucleolar Stress Responses', Cells, 1: 774-98.
James, A., Y. Wang, H. Raje, R. Rosby, and P. DiMario. 2014. 'Nucleolar stress with and without p53', Nucleus, 5: 402-26.
Key, J L. 1969. 'Hormones and Nucleic Acid Metabolism', Annual Review of Plant Biology, 20: 449-74.
Kim, H. J., H. G. Nam, and P. O. Lim. 2016. 'Regulatory network of NAC transcription factors in leaf senescence', Curr Opin Plant Biol, 33: 48-56.
Konishi, Mineko, and Munetaka Sugiyama. 2003. 'Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana', Development, 130: 5637-47.
Lai, P. B., T. Y. Chi, and G. G. Chen. 2007. 'Different levels of p53 induced either apoptosis or cell cycle arrest in a doxycycline-regulated hepatocellular carcinoma cell line in vitro', Apoptosis, 12: 387-93.
Lecompte, O., R. Ripp, J. C. Thierry, D. Moras, and O. Poch. 2002. 'Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale', Nucleic Acids Res, 30: 5382-90.
Lee, Sangmin, Hyo-Jun Lee, Sung Un Huh, Kyung-Hee Paek, Jun-Ho Ha, and Chung-Mo Park. 2014. 'The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions', Plant Science, 227: 76-83.
Lee, Sangmin, Pil Joon Seo, Hyo‐Jun Lee, and Chung‐Mo Park. 2012. 'A NAC transcription factor NTL4 promotes reactive oxygen species production during drought‐induced leaf senescence in Arabidopsis', The Plant Journal, 70: 831-44.
Lohrum, Marion A. E., Robert L. Ludwig, Michael H. G. Kubbutat, Mary Hanlon, and Karen H. Vousden. 2003. 'Regulation of HDM2 activity by the ribosomal protein L11', Cancer Cell, 3: 577-87.
Lu Min, Lu Min, Zhang DengFeng Zhang DengFeng, Shi YunSu Shi YunSu, Song YanChun Song YanChun, Li Yu Li Yu, and Wang TianYu Wang TianYu. 2013. 'Overexpression of a stress induced maize NAC transcription factor gene, ZmSNAC1, improved drought and salt tolerance in Arabidopsis'.
Mahapatra, Kalyan, and Sujit Roy. 2020. 'An insight into the mechanism of DNA damage response in plants- role of SUPPRESSOR OF GAMMA RESPONSE 1: An overview', Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 819-820: 111689.
Mayer, C., and I. Grummt. 2005. 'Cellular stress and nucleolar function', Cell Cycle, 4: 1036-8.
Nakano, Yoshimi, Masatoshi Yamaguchi, Hitoshi Endo, Nur Ardiyana Rejab, and Misato Ohtani. 2015. 'NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants', Frontiers in Plant Science, 6.
Ofir-Rosenfeld, Y., K. Boggs, D. Michael, M. B. Kastan, and M. Oren. 2008. 'Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26', Mol Cell, 32: 180-9.
Ogita, Nobuo, Yoko Okushima, Mutsutomo Tokizawa, Yoshiharu Y. Yamamoto, Maho Tanaka, Motoaki Seki, Yuko Makita, Minami Matsui, Kaoru Okamoto-Yoshiyama, Tomoaki Sakamoto, Tetsuya Kurata, Kei Hiruma, Yusuke Saijo, Naoki Takahashi, and Masaaki Umeda. 2018. 'Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis', The Plant Journal, 94: 439-53.
Ohbayashi, Iwai, Mineko Konishi, Kazuo Ebine, and Munetaka Sugiyama. 2011. 'Genetic identification of Arabidopsis RID2 as an essential factor involved in pre‐rRNA processing', The Plant Journal, 67: 49-60.
Ohbayashi, Iwai, Chung-Yi Lin, Naoki Shinohara, Yoko Matsumura, Yasunori Machida, Gorou Horiguchi, Hirokazu Tsukaya, and Munetaka Sugiyama. 2017. 'Evidence for a role of ANAC082 as a ribosomal stress response mediator leading to growth defects and developmental alterations in Arabidopsis', The Plant Cell, 29: 2644-60.
Preuss, SB, and AB Britt. 2003. 'A DNA-damage-induced cell cycle checkpoint in Arabidopsis', Genetics, 164: 323-34.
Puranik, S., P. P. Sahu, P. S. Srivastava, and M. Prasad. 2012. 'NAC proteins: regulation and role in stress tolerance', Trends Plant Sci, 17: 369-81.
Russo, A., and G. Russo. 2017. 'Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress', Int J Mol Sci, 18.
Ryu, Tae Ho, Young Sam Go, Seung Hee Choi, Jeong-Il Kim, Byung Yeoup Chung, and Jin-Hong Kim. 2019. 'SOG1-dependent NAC103 modulates the DNA damage response as a transcriptional regulator in Arabidopsis', The Plant Journal, 98: 83-96.
Sasaki, Shun, Toru Murakami, Miharu Yasumuro, Ayaka Makita, Yutaro Oi, Yuta Hiragori, Shun Watanabe, Rin Kudo, Noriya Hayashi, and Iwai Ohbayashi. 2022. 'The conserved upstream ORF of the Arabidopsis ANAC082 gene mediates translational upregulation in response to nucleolar stress', bioRxiv: 2022.10. 07.511279.
Shinohara, Naoki, Iwai Ohbayashi, and Munetaka Sugiyama. 2014. 'Involvement of rRNA biosynthesis in the regulation of CUC1 gene expression and pre-meristematic cell mound formation during shoot regeneration', Frontiers in Plant Science, 5.
Sotta, Naoyuki, Takuya Sakamoto, Takehiro Kamiya, Ryo Tabata, Katsushi Yamaguchi, Shuji Shigenobu, Masashi Yamada, Mitsuyasu Hasebe, Shinichiro Sawa, and Toru Fujiwara. 2023. 'NAC103 mutation alleviates DNA damage in an Arabidopsis thaliana mutant sensitive to excess boron', Frontiers in Plant Science, 14.
Souer, Erik, Adèle van Houwelingen, Daisy Kloos, Jos Mol, and Ronald Koes. 1996. 'The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries', Cell, 85: 159-70.
Sugawara, Neal, Xuan Wang, and James E Haber. 2003. 'In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination', Molecular cell, 12: 209-19.
Sun, Ling, Zheng-Ting Yang, Ze-Ting Song, Mei-Jing Wang, Le Sun, Sun-Jie Lu, and Jian-Xiang Liu. 2013. 'The plant-specific transcription factor gene NAC103 is induced by bZIP60 through a new cis-regulatory element to modulate the unfolded protein response in Arabidopsis', The Plant Journal, 76: 274-86.
Taipakova, Sabira, Aigerim Kuanbay, Christine Saint-Pierre, Didier Gasparutto, Yeldar Baiken, Regina Groisman, Alexander A. Ishchenko, Murat Saparbaev, and Amangeldy K. Bissenbaev. 2020. 'The Arabidopsis thaliana Poly(ADP-Ribose) Polymerases 1 and 2 Modify DNA by ADP-Ribosylating Terminal Phosphate Residues', Frontiers in Cell and Developmental Biology, 8.
Takahashi, Hiro, Anna Takahashi, Satoshi Naito, and Hitoshi Onouchi. 2012. 'BAIUCAS: a novel BLAST-based algorithm for the identification of upstream open reading frames with conserved amino acid sequences and its application to the Arabidopsis thaliana genome', Bioinformatics, 28: 2231-41.
Takahashi, Naoki, Nobuo Ogita, Tomonobu Takahashi, Shoji Taniguchi, Maho Tanaka, Motoaki Seki, and Masaaki Umeda. 2019. 'A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis', Elife, 8: e43944.
Tamaki, Hiroaki, Mineko Konishi, Yasufumi Daimon, Mitsuhiro Aida, Masao Tasaka, and Munetaka Sugiyama. 2009. 'Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature-sensitive mutants of Arabidopsis', The Plant Journal, 57: 1027-39.
Tran, Lam-Son Phan, Kazuo Nakashima, Yoh Sakuma, Sean D Simpson, Yasunari Fujita, Kyonoshin Maruyama, Miki Fujita, Motoaki Seki, Kazuo Shinozaki, and Kazuko Yamaguchi-Shinozaki. 2004. 'Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter', The Plant Cell, 16: 2481-98.
Vargas-Hernández, Brenda Yazmín, Leandro Núñez-Muñoz, Berenice Calderón-Pérez, Beatriz Xoconostle-Cázares, and Roberto Ruiz-Medrano. 2022. 'The NAC Transcription Factor ANAC087 Induces Aerial Rosette Development and Leaf Senescence in Arabidopsis', Frontiers in Plant Science, 13.
Wang, H., L. C. Fowke, and W. L. Crosby. 1997. 'A plant cyclin-dependent kinase inhibitor gene', Nature, 386: 451-2.
Yamaguchi, Masatoshi, Isura Nagahage, Misato Ohtani, Toshiki Ishikawa, Hirofumi Uchimiya, Maki Kawai-Yamada, and Taku Demura. 2015. 'Arabidopsis NAC domain proteins VND-INTERACTING1 and ANAC103 interact with multiple NAC domain proteins', Plant Biotechnology, 32: 1-5.
Yi, Dalong, Claire Lessa Alvim Kamei, Toon Cools, Sandy Vanderauwera, Naoki Takahashi, Yoko Okushima, Thomas Eekhout, Kaoru Okamoto Yoshiyama, John Larkin, Hilde Van den Daele, Phillip Conklin, Anne Britt, Masaaki Umeda, and Lieven De Veylder. 2014. 'The Arabidopsis SIAMESE-RELATED Cyclin-Dependent Kinase Inhibitors SMR5 and SMR7 Regulate the DNA Damage Checkpoint in Response to Reactive Oxygen Species', The Plant Cell, 26: 296-309.
Yoshiyama, Kaoru, Phillip A Conklin, Neil D Huefner, and Anne B Britt. 2009. 'Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage', Proceedings of the National Academy of Sciences, 106: 12843-48.
Zhang, Yanping, and Hua Lu. 2009. 'Signaling to p53: ribosomal proteins find their way', Cancer Cell, 16: 369-77.
Zuo, Jianru, Qi-Wen Niu, and Nam-Hai Chua. 2000. 'An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants', The Plant Journal, 24: 265-73.