| 研究生: |
吳秉鴻 Wu, Ping-Hung |
|---|---|
| 論文名稱: |
利用瓶型光束在泵源操作下之模態結構變化 Pattern formation operating with pumping by a bottle beam |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 圖案形成 、光渦流 、多奇異點光渦流 、幾何模態 、軸稜鏡 |
| 外文關鍵詞: | pattern formation, vortex, multi-singularity vortex, geometric mode, axicon |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中,我們利用二極體泵源加Nd:YVO4晶體架設出幾何環形的四面鏡雷射共振腔,利用ABCD Law我們知道四面鏡的參數產生雷射腔的穩定區範圍。同時,操作在穩定區邊緣,改變共振腔長度,可以依序產生基本模態、光渦流、高階模態、環形模態及幾何模態。為了產生光渦流,我們在晶體前加入軸稜鏡(axicon)和透鏡產生瓶型光。完成瓶型光的架設與四面鏡的架設,我們利用1/2λ玻片改變泵源偏振並觀察輸出圖案的偏振方向改變,發現圖案的偏振方向主要由Nd:YVO4的光軸決定,改變偏振方向只會影響輸出圖案的光強度大小。而後,再利用針放在腔內改變腔內條件,我們可以觀察混合高階模態中,由於針改變腔內條件,使一些高階模態被損耗,留下單純的厄米-高斯模態(Hermite-Gaussian mode, HG mode)。最後為了確認光渦流,我們架設Mach-Zehnder干涉儀,再改變腔長,觀察干涉圖的變化,同時我們利用matlab模擬出一些特定的高階模態由HG mode產生。
In this thesis, we take advantage of a diode-pumped Nd:YVO4 laser that can obtain the vortex by a bottle beam. Utilizing the ABCD Law, we design the four-elements laser system. By adjusting the cavity length, we operated the edge of stable region to generate geometric mode for laser cavity. Therefore, we obtain the fundamental mode, vortex, high order node, ring mode and geometric mode by operating the cavity length. To generate the vortex, we add the axicon and lens to create the ring light. In this experiment, we set up the Mach-Zehnder interferometer to sure the pattern is vortex. However, we observed the pattern formation from vortex to geometric mode by adjusting the cavity length and recording the pattern interferogram form Mach-Zehnder interferometer. Furthermore, we add the needle in the laser cavity to change the laser condition. This is a way to observe the pattern formation. Nevertheless, by utilizing the needle to change pattern, we find the high order mode has the HG mode and fitting with the ideal HG mode. In this paper, we add the 1/2λ waveplate to change the pumping polarization, and we find the polarization of the output light influence by Nd:YVO4 optical axis. Finally, we generate the multi-singularity vortex beam by operating the cavity length.
1. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82, 560-567 (1909).
2. R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Physical Review 50, 115-125 (1936).
3. J. F. Nye, M. V. Berry, and F. C. Frank, “Dislocations in wave trains,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 336, 165-190 (1974).
4. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Physical Review A 45, 8185-8189 (1992).
5. Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Applied Physics Letters 101, 031113 (2012).
6. Jörg B. Götte, Kevin O’Holleran, Daryl Preece, Florian Flossmann, Sonja Franke-Arnold, Stephen M. Barnett, and Miles J. Padgett, “ Light beams with fractional orbital angular momentum and their vortex structure,” Optics Express 16, 993-1006 (2008).
7. V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “Vortex HermiteGaussian laser beams,” Opt. Lett. 40, 701–704 (2015).
8. E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,” Journal of Optics A 6, S157–S161 (2004).
9. T. Alieva, “Mode mapping in paraxial lossless optics,” Optics Letter 30, 1461–1463 (2005).
10. J. Scheuer and M. Orenstein, “Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999).
11. M. Brambilla, F. Battipede, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and C. O. Weiss, “Transverse laser patterns. I. Phase singularity crystals,” Phys. Rev. A 43, 5090–5113 (1991).
12. S. L. Lachinova and W. Lu,“Pattern formation and competition in a nonlinear ring cavity, ”Journal of Optics B: Quantum and Semiclassical Optics, 393–398(2000).
13. Y. H. Hsieh, Y. H. Lai, M. X. Hsieh, and Y. F. Chen,“Characterizing the topological charges distribution of the elliptical beams with vortex lattices, ” Optics Letter 45, 1–1 (2020).
14. J. W. Kim, and W. A. Clarkson, “Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser,” Optics Communications 296, 109-112 (2013).
15. G. Li, K. Xia, Z. Wang, H. Shen, A. Shirakawa, K.-i. Ueda, and J. Li, “Conical refraction, for annular pumping of an efficient vortex Nd: YAG laser,” Laser Physics Letters 14, 075001 (2017).
16. D. Chen, Y. Miao, H. Fu, H. He, J. Tong, and J. Dong, “High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency,” APL Photonics 4, 106106 (2019).
17. M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Optics Communications 96, 123-132 (1993).
18. M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Optics communications 112, 321-327 (1994).
19. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642-1651 (2008).
20. N. Heckenberg, R. McDuff, C. Smith, and A. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221-223 (1992).
21. D. G. Grier, “A revolution in optical manipulation,” nature 424, 810-816 (2003).
22. Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Opt. 5, 86-92 (2018).
23. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4, B14-B28 (2016).
24. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
25. A.E.Siegman, “Lasers,” (1986).
26. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers, ” Applied Optics 3, 523-526(1964).
27. I. A. Ramsay and J. J. Degnan, “A Ray Analysis of Optical Resonators Formed by Two Spherical Mirrors, ” Applied Optics. 9, 385-398 (1970).
28. M.-D. Wei, W.-F. Hsieh, and C. C. Sung, “Dynamics of an optical resonator determined by its iterative map of beam parameters, ” Optics Communications 146, 201-207 (1998).
29. H.-H. Wu, “Formation of off-axis beams in an axially pumped solid-state laser,” Opt. Express 12, 3459-3464 (2004).
30. Y. H. Hsieh, Y. H. Lai, C. H. Tsou, H. C. Liang, K. F. Huang, and Y. F. Chen, “Experimental and theoretical explorations for optimizing high-power geometric modes in diode-pumped solid-state lasers,” Laser Physics Letters 15, 075802 (2018).
31. C.-P. Chiu, C.-Y. Kuo, C.-C. Wang, H.-H. Wu, and M.-D. Wei, “Geometric ring mode in a linear cavity,” Laser Physics 28, 085001, (2018).
32. M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Physics today 57, 35-40 (2004).
33. S. Qiu, T. Liu, Z. Li, C. Wang, Y. Ren, Q. Shao, and C. Xing, “Influence of lateral misalignment on the optical rotational Doppler effect,” Applied Optics 58, 2650-2655 (2019).
34. M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New Journal of Physics 17, 023011 (2015).
35. Sephton, A. Dudley, and A. Forbes, “Revealing the radial modes in vortex beams,” Applied optics 55, 7830-7835 (2016).
36. J. Durnin, J. Miceli Jr, and J. Eberly, “Diffraction-free beams,” Physical review letters 58, 1499 (1987).
37. X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Applied Optics 54, 10641-10649 (2015).
38. J. W. Goodman, “Introduction to Fourier optics,” Roberts and Company Publishers, (2005).
39. S. Chávez-Cerda, and G. New, “Evolution of focused Hankel waves and Bessel beams,” Optics communications 181, 369-377, (2000).
40. M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Optics communications 248, 7-14, (2005).
41. L. A. Lugiato, M. Brambilla and A. Gatti, “ Optical Pattern Formation,’’ Science Direct(1999).
42. Yu. A. Logvin and T. Ackemann,“Interaction between Hopf and static instabilities in a pattern-forming optical system, “Physical review, (1998).
43. A. S. Patrascu, C. Nath, M. Le Berre, E. Ressayre and A. Tallet,“Multi-conical instability in the passive ring cavity: linear analysis, ”Optics Communications 91, 433-443(1992).
44. Yu. A. Logvin, T. Ackemann and W. Lange, “Winking hexagons, ” Europhys. Lett., 38 (8), 583-588, (1997).
45. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps, ” J. Opt. A: Pure Appl. Opt. 6, 259–268, (2004).
46. J. Visser, N. J. Zelders, and G. Nienhuis, “Wave description of geometric modes of a resonator, ”J. Opt. Soc., 1559-1566 (2005).
47. J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd:YVO4 laser, ”Optics Communications, 345-351(2001).
48. R. Kingslake and R. B. Johnson, “Lens Design Fundamentals, ”Elsevier Science (2009).