簡易檢索 / 詳目顯示

研究生: 許濬璿
Shiu, Jiun-Shiuan
論文名稱: 原子系綜中可訂製的光子對生成:多功能量子資訊應用平台
Tailored Photon Pair Generation in Atomic Ensembles: A Versatile Platform for Quantum Information Applications
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 397
中文關鍵詞: 雙光子生成原子系綜DLCZ 協定雷射冷卻原子自發四波混頻
外文關鍵詞: Biphoton generation, Atomic ensembles, DLCZ protocol, Laser-cooled atoms, Spontaneous four-wave mixing
ORCID: https://orcid.org/0009-0006-6585-2062
相關次數: 點閱:23下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對原子系統中可調控的雙光子生成進行了完整的實驗與理論研究,涵蓋了自發四波混頻 (spontaneous four-wave mixing, SFWM) 以及 Duan-Lukin-Cirac-Zoller (DLCZ) 型自發拉曼散射 (spontaneous Raman scattering, SRS) 兩種方案。在SFWM 機制中,兩個雷射場同時與原子系統交互作用,驅動四光子散射過程,並藉由集體原子效應產生具時間相關性的光子對。我們系統性地分析了光子配對比 (即區分同調的成對光子與非同調的背景光子),並提出一種方法可從實驗數據中提取該比值。結果顯示,光子配對比隨光學厚度 (OD) 增加而上升,在 OD = 120 時達到 0.89,此時每秒可產生 1.16 × 10^7 對有關連性的光子,總產生率率則為 1.30 × 10^7。在低增益區域中,所產生的雙光子具有高純度,訊雜比高達 241,超越古典極限五個數量級。此外,雙光子的頻寬與頻率皆可調控,使其能高效耦合至窄頻量子系統。相比之下,DLCZ 型方案則依賴於序列式拉曼過程:首先由單一激發脈衝誘發自發拉曼散射,產生 Stokes 光子並在原子系統中建立基態同調性;隨後延遲施加的耦合場再將此同調性轉換為 anti-Stokes 光子。此機制可實現精確的時間控制,並支援具需求式的雙光子產生。雖然其效率與SFWM 同樣隨 OD 增加而提升,但由於基礎物理機制不同,所展現的量子關聯性亦有差異。我們同時提出了首個可以捕捉 DLCZ 型雙光子生成動力學的開放系統理論模型,並由此獲得新的物理洞見。綜合而言,本研究建立了一個多功能的量子光源平台,具備應用於量子通訊、量子記憶與量子運算的潛力。

    This thesis presents a comprehensive experimental and theoretical study of tailored biphoton generation in atomic ensembles, utilizing both spontaneous four-wave mixing (SFWM) and Duan-Lukin-Cirac-Zoller (DLCZ)-type spontaneous Raman scattering schemes. In SFWM, two laser fields interact simultaneously with the ensemble to drive a four-photon scattering process, generating time-correlated photon pairs through collective atomic interactions. We systematically analyze the photon pairing ratio—distinguishing coherent pairs from incoherent background photons—and develop a method to extract this ratio from experimental data. The pairing ratio increases with optical depth (OD), reaching 0.89 at OD = 120, where 1.16 × 10^7 correlated pairs per second are produced from a total rate of 1.30 × 10^7. In the low-gain regime, the biphotons exhibit high purity, with a signal-to-background ratio of 241, surpassing the classical limit by five orders of magnitude. Additionally, the biphoton bandwidth and frequency are tunable, enabling efficient coupling to narrowband quantum systems. In contrast, the DLCZ-type scheme relies on a sequential Raman process: a single excitation pulse induces spontaneous Raman scattering, emitting a Stokes photon while establishing ground-state coherence in the ensemble. A delayed coupling field then retrieves this coherence as an anti-Stokes photon. This mechanism enables precise temporal control and supports on-demand photon pair generation. While its efficiency shows similar OD dependence as SFWM, the underlying physical processes result in different quantum correlations. We also present the first open-system theoretical model capturing the dynamics of DLCZ-type biphoton generation, providing new insights. Together, these results establish a versatile platform for quantum communication, memory, and computation.

    摘要i Abstract ii Acknowledgements iii Table of Contents v List of Tables ix List of Figures x Chapter 1. Introduction 1 Chapter 2. Theory I: Interaction between Atoms and Classical Fields 4 2.1 Atom–Field Interaction 4 2.2 Investigation of Two-Level Atom–Field Interaction via Schrödinger Equation 7 2.3 Density Matrix Expression 11 2.4 Rabi Oscillation 13 2.4.1. Application 1: Ramsey Interferometry 17 2.4.2. Application 2: Quantum Zeno Effect 19 2.5 Relaxation Processes and Optical Bloch Equation 21 2.6 Damped Rabi Oscillation 24 2.7 Maxwell–Schrödinger Equation 26 2.8 Absorption Spectrum 29 2.9 Perturbation Theory 33 2.10 Propagating Dynamics 37 2.10.1. Fourier Analysis 38 2.10.2. Laplace Analysis 40 2.11 Coherent Population Trapping 42 2.11.1. Basis Transformation 42 2.11.2. Coherent Population Trapping: Resonant Scenario 44 2.11.3. Coherent Population Trapping: Non-Resonant Scenario 47 2.12 Λ-Type Electromagnetically Induced Transparency 48 2.12.1. Slow Light Effect 51 2.12.2. Physical Mechanism Behind Transparency 53 2.12.3. Dark-State Polariton 55 2.12.4. Light Storage 58 2.13 Autler–Townes Effect 60 2.A Complex Integral 62 Chapter 3. Theory II: Interaction between Atoms and Quantum Fields 66 3.1 Field Quantization 66 3.1.1. Mode Expansion in a Cavity 67 3.1.2. Plane-Wave Representation and Quantization 69 3.2 Photon Statistics 71 3.2.1. Quadrature Variance 73 3.2.2. Coherent State 75 3.2.3. Squeezed State 80 3.2.4. Thermal State 83 3.3 Collective Atomic Operator Framework 86 3.4 Atomic Dynamics 87 3.4.1. Single-Mode Bosonic System Coupled to a Reservoir 87 3.4.2. Green’s Function Method 90 3.4.3. Preservation of Commutation Relations 91 3.4.4. Heisenberg–Langevin Equation and Fluctuation–Dissipation Theorem 92 3.4.5. Single-Mode Fermionic System Coupled to Reservoir 94 3.4.6. Two-Level Atom Coupled to Bosonic Reservoir 95 3.5 Continuous-Variable Commutation Relations 100 3.6 Maxwell–Schrödinger Equations for Quantized Fields 102 3.7 A Two-Level Atom Ensemble Perturbed by a Quantized Field 103 3.8 Dark-State Polariton 107 3.9 Raman Transition 109 3.A Diffusion Coefficients and Fluctuation–Dissipation Theorem 115 Chapter 4. Laser-Cooled Atomic Ensemble: Preparation and Configuration 117 4.1 Diode Laser and External Cavity Diode Laser 117 4.1.1. Diode Laser 118 4.1.2. External-Cavity Diode Laser 120 4.1.3. Tapered Amplifier 121 4.2 Frequency Stabilization System 124 4.2.1. Saturated Absorption Spectroscopy 124 4.2.2. Lock-in Amplifier 125 4.2.3. Integrator 127 4.2.4. Fabry–Pérot Interferometer 129 4.3 Rubidium Atom 131 4.4 Electro-Optic Modulator 133 4.5 Acousto-Optic Modulator 135 4.6 Magneto-Optical Trap 139 4.7 Vacuum System 144 4.8 Beam Size and Rabi Frequency 146 4.9 Experiment of Electromagnetically Induced Transparency 149 4.A Thermal Doppler Broadening 153 4.B Polarization Basis: From Classical Waves to Quantum States 154 Chapter 5. Spontaneous Four-Wave Mixing: Theory 158 5.1 Biphoton Generation 159 5.1.1. Heisenberg–Langevin Operator Approach 160 5.1.2. Derivation of Field Operators 165 5.1.3. Photon Generation Rate 168 5.2 Biphoton Spectrum 172 5.3 Correlation Functions 188 5.3.1. Second-Order Autocorrelation Function 188 5.3.2. Second-Order Cross-Correlation Function 197 5.3.3. Conditional Autocorrelation Function 207 5.4 Wave-Function-Based Method 212 5.4.1. Linear and Nonlinear Susceptibilities 215 5.4.2. Characteristic Times 216 5.A Analytical Formulation of SFWM 217 5.B Thermal-State Distribution of Biphotons 220 Chapter 6. Spontaneous Four-Wave Mixing: Experiment 223 6.1 Energy Level Selection and State Preparation 223 6.2 Experimental Setup 227 6.2.1. Guiding Method 229 6.2.2. Etalon Filter 232 6.2.3. Single-Photon Counting Module 237 6.2.4. Time-of-Flight Multiscaler 240 6.3 Coincidence Counts and Coincidence Count Rate 243 6.3.1. Coincidence Count Representation 243 6.3.2. Coincidence Count Rate Representation 245 6.3.3. Reverse Heralding Configuration 246 6.4 Experimental Results and Discussion 248 6.4.1. Bandwidth-Controllable Biphotons 249 6.4.2. High-Purity Biphotons 252 6.4.3. Highly Correlated Ultrabright Biphotons 254 6.4.4. Frequency-Tunable Biphotons 256 6.4.5. Asymmetrically Generated Biphotons 262 6.A User Interface of the TOF Software 269 Chapter 7. DLCZ-Type Spontaneous Raman Scattering: Theory 272 7.1 The Write Process 273 7.1.1. Numerical Illustration of Analytical Results 280 7.1.2. Ground-State Approximation 290 7.1.3. Large-Detuning Approximation 301 7.1.4. Creation of Spinwave Coherence 308 7.1.5. Raman Polariton 317 7.2 The Read Process 321 7.2.1. Discussion of Computational Results 326 7.2.2. Rapid Retrieval 333 7.2.3. Adiabatic Retrieval 335 7.3 Correlation Functions 337 7.3.1. Second-Order Autocorrelation Function 337 7.3.2. Second-Order Cross-Correlation Function 339 7.A Derivation of Zeroth-Order Dynamic 343 7.B Magnus Expansion 346 Chapter 8. DLCZ-Type Spontaneous Raman Scattering: Experiment 350 8.1 Ensemble Preparation and Experimental Setup 350 8.2 Cross-Correlation Measurement 352 8.3 Experimental Results and Discussion 355 Chapter 9. Conclusion 361 References 363

    [1] H. J. Kimble. The quantum internet. Nature, 453(7198):1023-1030, 2008.
    [2] P. W. Shor and J. Preskill. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 85(2):441, 2000.
    [3] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81(3):1301-1350, 2009.
    [4] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92(2):025002, 2020.
    [5] Y. Liu, W.-J. Zhang, C. Jiang, J.-P. Chen, C. Zhang, W.-X. Pan, D. Ma, H. Dong, J.-M. Xiong, C.-J. Zhang, H. Li, R.-C. Wang, J. Wu, T.-Y. Chen. L. You, X.-B. Wang, Q. Zhang, J.-W. Pan. Experimental twin-field quantum key distribution over 1000 km fiber distance, Phys. Rev. Lett., 130(21):210801, 2023.
    [6] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79(1):135-174, 2007.
    [7] J. L. O’Brien. Optical quantum computing. Science, 318(5856):1567-1570, 2007.
    [8] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan. Quantum computational advantage using photons. Science, 370(6523):1460-1463, 2020.
    [9] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger. Experimental quantum teleportation. Nature, 390(6660):575-579, 1997.
    [10] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409(6816):46-526, 2001.
    [11] J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik. Quantum teleportation between light and matter. Nature, 443(7111):557-560, 2006.
    [12] J.-G. Ren, P. Xu, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li, H.-Y. Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu, R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan. Ground-to-satellite quantum teleportation. Nature, 549(7670):70-73, 2017.
    [13] S. Wehner, D. Elkouss, and R. Hanson. Quantum internet: A vision for the road ahead. Science, 362(6412):eaam9288, 2018.
    [14] D. C. Burnham and D. L. Weinberg. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett., 25(2):84, 1970.
    [15] Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim. Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms. Phys. Rev. Lett., 113(6):063602, 2014.
    [16] J. Park, T. Jeong, H. Kim, and H. S. Moon. Time-energy entangled photon pairs from Doppler-broadened atomic ensemble via collective two-photon coherence. Phys. Rev. Lett., 121(26):263601, 2018.
    [17] G.-H. Lee, Y. S. Ihn, A. Lee, U.-S. Kim, and Y.-H. Kim. Nonlocal two-photon interference of energy-time entangled photon pairs generated in Doppler-broadened ladder-type 87Rb atoms. Phys. Rev. A, 100(5):053817, 2019.
    [18] Y. Mei, Y. Zhou, S. Zhang, J. Li, K. Liao, H. Yan, S.-L. Zhu, S. Du. Einstein-podolsky-rosen energy-time entanglement of narrow-band biphotons. Phys. Rev. Lett., 124(1):010509, 2020.
    [19] H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du. Generation of narrow-band hyperentangled nondegenerate paired photons. Phys. Rev. Lett., 106(3):033601, 2011.
    [20] K. Liao, H. Yan, J. He, S. Du, Z.-M. Zhang, and S.-L. Zhu. Subnatural-linewidth polarization-entangled photon pairs with controllable temporal length. Phys. Rev. Lett., 112(24):243602, 2014.
    [21] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics, 13(5):346-351, 2019.
    [22] J. Park, H. Kim, and H. S. Moon. Polarization-entangled photons from a warm atomic ensemble using a Sagnac interferometer. Phys. Rev. Lett., 122(14):143601, 2019.
    [23] Q.-F. Chen, B.-S. Shi, Y.-S. Zhang, and G.-C. Guo. Entanglement of the orbital angular momentum states of the photon pairs generated in a hot atomic ensemble. Phys. Rev. A, 78(5):053810, 2008.
    [24] D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo. Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun., 4(1):2527, 2013.
    [25] T.-M. Zhao, Y. S. Ihn, Y.-H. Kim. Direct generation of narrow-band hyperentangled photons. Phys. Rev. Lett., 122(12):123607, 2019.
    [26] L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57(20):2520, 1986.
    [27] Z. Y. Ou and Y. J. Lu. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett., 83(13):2556, 1999.
    [28] S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken. Entanglement and conservation of orbital angular momentum in spontaneous parametric downconversion. Phys. Rev. A, 69(2):023811, 2004.
    [29] A. Tanaka, R. Okamoto, H. H. Lim, S. Subashchandran, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, T. Hirohata, S. Kurimura, and S. Takeuchi. Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement. Opt. Express, 20(23):25228-25238, 2012.
    [30] P.-J. Tsai and Y.-C. Chen. Ultrabright, narrow-band photon-pair source for atomic quantum memories. Quantum Sci. Technol., 3(3):034005, 2018.
    [31] A. Vanselow, P. Kaufmann, H. M. Chrzanowski, and S. Ramelow. Ultra-broadband SPDC for spectrally far separated photon pairs. Opt. Lett., 44(19):4638-4641, 2019.
    [32] C. W. S. Chang, C. Sabín, P. Forn-Díaz, F. Quijandría, A. M. Vadiraj, I. Nsanzineza, G. Johansson, and C. M. Wilson. Observation of three-photon spontaneous parametric down-conversion in a superconducting parametric cavity. Phys. Rev. X, 10(1):011011., 2020.
    [33] G. Buser, R. Mottola, B. Cotting, J. Wolters, and P. Treutlein. Single-photon storage in a ground-state vapor cell quantum memory. PRX Quantum, 3(2):020349, 2022.
    [34] T. Santiago-Cruz, S. D. Gennaro, O. Mitrofanov, S. Addamane, J. Reno, I. Brener, and M. V. Chekhova. Resonant metasurfaces for generating complex quantum states. Science, 377(6609):991-995, 2022.
    [35] H.-C. Weng and C.-S. Chuu. Implementation of Shor’s algorithm with a single photon in 32 dimensions. Phys. Rev. Appl., 22(3):034003, 2024.
    [36] M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar. All-fiber photon-pair source for quantum communications. IEEE Photon. Technol. Lett., 14(7):983-985, 2002.
    [37] H. Takesue and K. Inoue. Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop. Phys. Rev. A, 70(3):031802, 2004.
    [38] X. Li, P. L. Voss, J. E. Sharping, and P. Kumar. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett., 94(5):053601, 2005.
    [39] Q. Lin, F. Yaman, and G. P. Agrawal. Photon-pair generation by four-wave mixing in optical fibers. Opt. Lett., 31(9):1286-1288, 2006.
    [40] K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U'Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley. Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber. Opt. Express, 15(22):14870-14886, 2007.
    [41] B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley. Photon pair generation in birefringent optical fibers. Opt. Express, 17(26):23589-23602, 2009.
    [42] L. Cui, X. Li, and N. Zhao. Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers. Phys. Rev. A, 85(2):023825, 2012.
    [43] D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren. Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions. Sci. Rep., 6(1):27377, 2016.
    [44] M. Cordier, P. Delaye, F. Gérôme, F. Benabid, and I. Zaquine. Raman-free fibered photon-pair source. Sci. Rep., 10(1):1650, 2020.
    [45] A. Bruns, C.-Y. Hsu, S. Stryzhenko, E. Giese, L. P. Yatsenko, I. A. Yu, T. Halfmann, and T. Peters. Ultrabright and narrowband intra-fiber biphoton source at ultralow pump power. Quantum Sci. Technol., 8(1):015002, 2023.
    [46] Mina Afsharnia, Saher Junaid, Sina Saravi, Mario Chemnitz, Katrin Wondraczek, Thomas Pertsch, Markus A. Schmidt, and Frank Setzpfandt. Generation of infrared photon pairs by spontaneous four-wave mixing in a CS2-filled microstructured optical fiber. Sci. Rep., 14(1):977, 2024.
    [47] J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar. Generation of correlated photons in nanoscale silicon waveguides. Opt. Express, 14(25):12388-12393, 2006.
    [48] H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-i. Itabashi. Entanglement generation using silicon wire waveguide. Appl. Phys. Lett., 91:201108, 2007.
    [49] H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi. Generation of polarization entangled photon pairs using silicon wire waveguide. Opt. Express, 16(8):5721-5727, 2008.
    [50] S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express, 17(19):16558-16570, 2009.
    [51] N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides. Opt. Express, 21(7):8596-8604, 2013.
    [52] J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson. On-chip quantum interference between silicon photon-pair sources. Nat. Photonics, 8(2):104-108, 2014.
    [53] S. Signorini, M. Finazzer, M. Bernard, M. Ghulinyan, G. Pucker, L. Pavesi. Silicon photonics chip for inter-modal four wave mixing on a broad wavelength range. Front. Phys., 7:128, 2019.
    [54] T. J. Steiner, J. E. Castro, L. Chang, Q. Dang, W. Xie, J. Norman, J. E. Bowers, and G. Moody. Ultrabright Entangled-Photon-Pair Generation from an AlGaAs-On-Insulator Microring Resonator. PRX Quantum, 2(1):010337, 2021.
    [55] A. Goswami, Y. Raj, and B. K. Das. Four-wave mixing in silicon nanophotonic waveguides and microring resonators: influence of two-photon absorption. J. Opt. Microsyst., 4(4):041404-041404, 2024.
    [56] V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris. Generation of paired photons with controllable waveforms. Phys. Rev. Lett., 94(18):183601, 2005.
    [57] J. K. Thompson, J. Simon, H. Loh, and V. Vuletić. A high-brightness source of narrowband, identical-photon pairs. Science, 313(5783):74-77, 2006.
    [58] L. Zhao, X. Guo, C. Liu, Y. Sun, M. M. T. Loy, and S. Du. Photon pairs with coherence time exceeding 1 μs. Optica, 1(2):84-88, 2014.
    [59] Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble. Phys. Rev. A, 96(6):063832, 2017.
    [60] J.-M. Chen, C.-Y. Hsu, W.-K. Huang, S.-S. Hsiao, F.-C. Huang, Y.-H. Chen, C.-S. Chuu, Y.-C. Chen, Y.-F. Chen, and I. A. Yu. Room-temperature biphoton source with a spectral brightness near the ultimate limit. Phys. Rev. Res., 4(2):023132, 2022.
    [61] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84(22):5094, 2000.
    [62] A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope. Squeezing and entanglement delay using slow light. Phys. Rev. A, 71(3):033809, 2005.
    [63] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich. Long-lived quantum memory. Nat. Phys., 5(2):100-104, 2009.
    [64] M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler. Unconditional room-temperature quantum memory. Nat. Phys., 7(10):794-798, 2011.
    [65] K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett., 107(5):053603, 2011.
    [66] S. Zhou, S. Zhang, C. Liu, J. F. Chen, J. Wen, M. M. T. Loy, G. K. L. Wong, and S. Du. Optimal storage and retrieval of single-photon waveforms. Opt. Express, 20(22):24124-24131, 2012.
    [67] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics, 13(5):346-351, 2019.
    [68] S. P. Horvath, M. K. Alqedra, A. Kinos, A. Walther, J. M. Dahlström, S. Kröll, and L. Rippe. Noise-free on-demand atomic frequency comb quantum memory. Phys. Rev. Res., 3(2):023099, 2021.
    [69] S. Dutta, Y. Zhao, U. Saha, D. Farfurnik, E. A. Goldschmidt, and E. Waks. An atomic frequency comb memory in rare-earth-doped thin-film lithium niobate. ACS Photonics, 10(4):1104-1109, 2023.
    [70] F. Vewinger, J. Appel, E. Figueroa, and A. I. Lvovsky. Adiabatic frequency conversion of optical information in atomic vapor. Opt. Lett., 32(19):2771-2773, 2007.
    [71] R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston. Four-wave mixing in the diamond configuration in an atomic vapor. Phys. Rev. A, 79(3):033814, 2009.
    [72] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy. A quantum memory with telecom-wavelength conversion. Nature Phys., 6(11):894-899, 2010.
    [73] Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich. Entanglement of light-shift compensated atomic spin waves with telecom light. Phys. Rev. Lett., 105(26):260502, 2010.
    [74] Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo. Orbital angular momentum photonic quantum interface. Light Sci. Appl., 5(1):e16019-e16019, 2016.
    [75] Z.-Y. Liu, J.-T. Xiao, J.-K. Lin, J.-J. Wu, J.-Y. Juo, C.-Y. Cheng, and Y.-F. Chen. High-efficiency backward four-wave mixing by quantum interference. Sci. Rep., 7(1):15796,
    2017.
    [76] J.-Y. Juo, J.-K. Lin, C.-Y. Cheng, Z.-Y. Liu, I. A. Yu, Y.-F. Chen. Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms. Phys. Rev. A, 97(5):053815, 2018.
    [77] C.-Y. Cheng, J.-J. Lee, Z.-Y. Liu, J.-S. Shiu, and Y.-F. Chen. Quantum frequency conversion
    based on resonant four-wave mixing. Phys. Rev. A, 103(2):023711, 2021.
    [78] C.-Y. Cheng, Z.-Y. Liu, P.-S. Hu, T.-N. Wang, C.-Y. Chien, J.-K. Lin, J.-Y. Juo, J.-S. Shiu, I. A. Yu, Y.-C. Chen, and Y.-F. Chen. Efficient frequency conversion based on resonant four-wave mixing. Opt. Lett., 46(3):681-684, 2021.
    [79] W.-H. Zhang, Y.-H. Ye, L. Zeng, M.-X. Dong, E.-Z. Li, J.-Y. Peng, Y. Li, D.-S. Ding, and B.-S. Shi. Telecom-wavelength conversion in a high optical depth cold atomic system. Opt. Express, 31(5):8042-8048, 2023.
    [80] P.-H. Tseng, L.-C. Chen, J.-S. Shiu, and Y.-F. Chen. Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles. Phys. Rev. A, 109(4):043716, 2024.
    [81] L.-C. Chen, M.-Y. Lin, J.-S. Shiu, X.-Q. Zhong, P.-H. Tseng, and Y.-F. Chen. High-efficiency
    telecom frequency conversion via a diamond-type atomic ensemble. Physical Review A, 112(1):013709, 2025.
    [82] Y.-F. Chen, Z.-H. Tsai, Y.-C. Liu, and I. A. Yu. Low-light-level photon switching by quantum interference. Opt. Lett., 30(23):3207-3209, 2005.
    [83] Y.-F. Chen, C.-Y. Wang, S.-H. Wang, and I. A. Yu. Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett., 96(4):043603, 2006.
    [84] B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen. Low-light-level cross-phase modulation with double slow-light pulses. Phys. Rev. Lett., 106(19):193006, 2011.
    [85] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin. Nanophotonic quantum phase switch with a single atom. Nature, 508(7495):241-244, 2014.
    [86] Z.-Y. Liu, Y.-H. Chen, Y.-C. Chen, H.-Y. Lo, P.-J. Tsai, I. A. Yu, Y.-C. Chen, and Y.-F. Chen. Large cross-phase modulations at the few-photon level. Phys. Rev. Lett., 117(20):203601, 2016.
    [87] K.-F. Chang, T.-P. Wang, C.-Y. Chen, Y.-H. Chen, Y.-S. Wang, Y.-F. Chen, Y.-C. Chen, and I. A. Yu. Low-loss high-fidelity frequency beam splitter with tunable split ratio based on electromagnetically induced transparency. Phys. Rev. Res., 3(1):013096, 2021.
    [88] Z.-Y. Liu, J.-S. Shiu, C.-Y. Cheng, and Y.-F. Chen. Controlling frequency-domain Hong-Ou-Mandel interference via electromagnetically induced transparency. Phys. Rev. A, 108(1):013702, 2023.
    [89] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich. Quantum telecommunication based on atomic cascade transitions. Phys. Rev. Lett., 96(9):093604, 2006.
    [90] R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston. Correlated photon pairs generated from a warm atomic ensemble. Phys. Rev. A, 82(5):053842, 2010.
    [91] R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble. Opt. Express, 19(15):14632-14641, 2011.
    [92] B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer. Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble. Phys. Rev. Lett., 111(12):123602, 2013.
    [93] M.-X. Dong, W. Zhang, S. Shi, K. Wang, Z.-Y. Zhou, S.-L. Liu, D.-S. Ding, and B.-S. Shi. Two-color hyper-entangled photon pairs generation in a cold 85Rb atomic ensemble. Opt. Express, 25(9):10145-10152, 2017.
    [94] D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo. Generation of nonclassical correlated photon pairs via a ladder-type atomic configuration: theory and experiment. Opt. Express, 20(10):11433-11444, 2012.
    [95] Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon. Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system. Opt. Express, 24(24):28083-28091, 2016.
    [96] G.-H. Lee, Y. S. Ihn, A. Lee , U-S. Kim, and Y.-H. Kim. Nonlocal two-photon interference of energy-time entangled photon pairs generated in Doppler-broadened ladder-type 87Rb atoms. Phys. Rev. A, 100(5):053817, 2019.
    [97] C. Wang, C.-H. Lee, and Y.-H. Kim. Generation and characterization of position-momentum entangled photon pairs in a hot atomic gas cell. Opt. Express, 27(24):34611-34617, 2019.
    [98] J. Park, H. Kim, and H. S. Moon. Polarization-entangled photons from a warm atomic ensemble using a Sagnac interferometer. Phys. Rev. Lett., 122(14):143601, 2019.
    [99] C. Wang, C.-H. Lee, Y. Kim, and Y.-H. Kim. Generation of hyper-entangled photons in a hot atomic vapor. Opt. Lett., 45(7):1802-1805, 2020.
    [100] P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris. Generation of narrow-bandwidth
    paired photons: use of a single driving laser. Phys. Rev. Lett., 97(11):113602, 2006.
    [101] J. Wen, S. Du, and M. H. Rubin. Biphoton generation in a two-level atomic ensemble. Phys. Rev. A, 75(3):033809, 2007.
    [102] S. Du, J. Wen, M. H. Rubin, and G. Y. Yin. Four-wave mixing and biphoton generation in a two-level system. Phys. Rev. Lett., 98(5):053601, 2007.
    [103] S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris. Subnatural linewidth biphotons with controllable temporal length. Phys. Rev. Lett., 100(18):183603, 2008.
    [104] S. Du, J. Wen, and M. H. Rubin. Narrowband biphoton generation near atomic resonance. J. Opt. Soc. Am. B, 25(12):C98-C108, 2008.
    [105] C. Shu, X. Guo, P. Chen, M. M. T. Loy, and S. Du. Narrowband biphotons with polarization-frequency-coupled entanglement. Phys. Rev. A, 91(4):043820, 2015.
    [106] C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du. Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell. Nat. Commun., 7(1):12783, 2016.
    [107] T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim. Direct generation of narrow-band hyperentangled photons. Phys. Rev. Lett., 122(12):123607, 2019.
    [108] T. Jeong and H. S. Moon. Temporal-and spectral-property measurements of narrowband photon pairs from warm double-Λ-type atomic ensemble. Opt. Express, 28(3):3985-3994, 2020.
    [109] C.-Y. Hsu, Y.-S. Wang, J.-M. Chen, F.-C. Huang, Y.-T. Ke, E. K. Huang, W. Hung, K.-L. Chao, S.-S. Hsiao, Y.-H. Chen, C.-S. Chuu, Y.-C. Chen, Y.-F. Chen, and I. A. Yu. Generation of sub-MHz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme. Opt. Express, 29(3):4632-4644, 2021.
    [110] S.-S. Hsiao, W.-K. Huang, Y.-M. Lin, J.-M. Chen, C.-Y. Hsu, and I. A. Yu. Temporal profile of biphotons generated from a hot atomic vapor and spectrum of electromagnetically induced transparency. Phys. Rev. A, 106(2):023709, 2022.
    [111] M. O. Araújo, L. S. Marinho, and D. Felinto. Observation of nonclassical correlations in biphotons generated from an ensemble of pure two-level atoms. Phys. Rev. Lett., 128(8):083601, 2022.
    [112] L. S. Marinho, M. O. Araújo, W. Martins, and D. Felinto. Enhancing nonclassical correlations for light scattered by an ensemble of cold two-level atoms. Opt. Lett., 48(12):3323-3326, 2023.
    [113] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64(10):1107, 1990.
    [114] K.-J. Boller, A. Imamoğlu, and S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66(20):2593, 1991.
    [115] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397(6720):594-598, 1999.
    [116] M. D. Lukin. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys., 75(2):457, 2003.
    [117] M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77(2):633-673, 2005.
    [118] Y.-S. Wang, K.-B. Li, C.-F. Chang, T.-W. Lin, J.-Q. Li, S.-S. Hsiao, J.-M. Chen, Y.-H. Lai, Y.-C. Chen, Y.-F. Chen, C.-S. Chuu, and I. A. Yu. Temporally ultralong biphotons with a linewidth of 50 kHz. APL Photonics, 7:126102, 2022.
    [119] P. Kolchin. Electromagnetically-induced-transparency-based paired photon generation. Phys. Rev. A, 75(3):033814, 2007.
    [120] J.-S. Shiu, Z.-Y. Liu, C.-Y. Cheng, Y.-C. Huang, I. A. Yu, Y.-C. Chen, C.-S. Chuu, C.-M. Li, S.-Y. Wang, and Y.-F. Chen. Observation of highly correlated ultrabright biphotons through increased atomic ensemble density in spontaneous four-wave mixing. Phys. Rev. Res., 6(3):L032001, 2024.
    [121] J.-S. Shiu, C.-W. Lin, Y.-C. Huang, M.-J. Lin, I.-C. Huang, T.-H. Wu, P.-C. Kaun, and Y.-F. Chen. Frequency-tunable biphoton generation via spontaneous four-wave mixing. Phys. Rev. A, 110(6):063723, 2024.
    [122] J.-S. Shiu, C.-W. Lin, and Y.-F. Chen. Asymmetric Biphoton Generation under Ground-State Decoherence and Phase Mismatch in a Cold Atomic Ensemble. Adv. Quantum Technol., e2500052, 2025.
    [123] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics, Nature, 414(6862):413-418, 2001.
    [124] C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin. Atomic memory for correlated photon states. Science, 301(5630):196-200, 2003.
    [125] C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett., 92(21):213601, 2004.
    [126] D. N. Matsukevich and A. Kuzmich. Quantum state transfer between matter and light. Science, 306(5696):663-666, 2004.
    [127] M. D. Eisaman, L. Childress, A. André, F. Massou, A. S. Zibrov, and M. D. Lukin. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett., 93(23):233602, 2004.
    [128] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83(1):33-80, 2011.
    [129] Y.-F. Pu, N. Jiang, W. Chang, H.-X. Yang, C. Li, and L.-M. Duan. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun., 8(1):15359, 2017.
    [130] L. Tian, Z. Xu, L. Chen, W. Ge, H. Yuan, Y. Wen, S. Wang, S. Li, and H. Wang. Spatial multiplexing of atom-photon entanglement sources using feedforward control and switching networks. Phys. Rev. Lett., 119(13):130505, 2017.
    [131] S.-Z. Wang, M.-J. Wang, Y.-F. Wen, Z.-X. Xu, T.-F. Ma, S.- J. Li, and H. Wang. Long-lived and multiplexed atom-photon entanglement interface with feed-forward controlled readouts. Commun. Phys., 4(1):168, 2021.
    [132] C. Li, S. Zhang, Y.-K. Wu, N. Jiang, Y.-F. Pu, and L.-M. Duan. Multicell atomic quantum memory as a hardware-efficient quantum repeater node. PRX Quantum, 2(4):040307, 2021.
    [133] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland. Quantum zeno effect. Phys. Rev. A, 41(5):2295, 1990.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE