| 研究生: |
吳念坤 Wu, Nian-Kun |
|---|---|
| 論文名稱: |
晶圓廠無塵室之性能式煙控設計功效評估 Efficacy assessment of smoke control in Wafer Fab clean rooms |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 晶圓廠 、無塵室 、FFU 、FDS |
| 外文關鍵詞: | Fab, clean room, FFU, FDS |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來半導體晶圓廠房火災發生事件頻傳,造成了嚴重的金錢損失及人員傷亡。而無塵室中溼式清洗台所使用的易燃性有機溶劑,為火災發生常見之原因。由於廠房利用頭頂般運系統(Overhead Transport)來代替人力搬運物料,因此無法設置防煙垂壁,故常使用替代方案來取代防煙垂壁之功能,以滿足淨空天花空間之需求。本研究之目的為探討晶圓廠常見之替代方案:FFU(Fan Filter Unit)降載與一般防煙垂壁方案於煙控上之差異,以驗證其替代方案之可行性。
本研究係利用溼式清洗台常用之有機溶劑異丙醇(IPA)為燃料,以火災模擬軟體FDS來模擬火災發生時煙霧的流動情形,藉此比較FFU降載方案與防煙垂壁方案之功效,並使用性能式煙控設計,探討不同降載幅度及不同火源參數設定對於FFU降載方案之影響。
模擬結果顯示:FFU降載方案雖在限制煙霧擴散之功效上略遜於設置防煙垂壁,但在減緩煙塵下降速度上效果相當顯著,說明此替代方案有助於達到減少人員傷亡之目標,仍為有效之煙控方案。而在影響FFU降載方案功效之因素上,以FFU降載幅度、火源大小及火源位置對模擬結果較有影響性,而火源高度則影響不大。
In recent years, fire happen in semiconductor fabs frequently and cause serious financial losses and casualties. The common reason of fire is that the wet benches use flammable organic solvent. Because fabs use Overhead Transport to replace the manual handling of materials, so cannot set the smoke prevention wall. Fabs often use alternatives to replace the ability of smoke prevention wall. This study aims to investigate the differences in smoke control between the alternatives:FFU (Fan Filter Unit) derating program and smoke prevention wall and to verify the feasibility of alternatives.
In this study, we use the Isopropanol (IPA), the common organic solvent often using in wet bench, as fuel and the fire simulation software FDS to simulate the flow of smoke when the fire broke. And then we use efficacy assessment of smoke control to explore the impact of different derating magnitude and different parameter settings on derating program.
Simulation results show that: In limiting the spread of smoke, the effect of derating program is slightly lower than smoke prevention wall. But derating program can retard soot falling speed effectively and contribute to achieve the goal of reducing casualties. And in the influence factors to derating program, derating range, fire size and location have big influence on the results, while the fire height have little impact.
【1】 丁俊智(2009),「火災煙控系統之應用」,中興工程季刊,第105期, pp.51-59。
【2】 王俊傑(2003),「高科技廠房防火工程設計應用-以晶圓廠為例」,國立交通大學機械工程系碩士論文。
【3】 王輔仁譯,「無塵室技術-設計、測試及運轉」,台北市,全華科技圖書股份有限公司。(譯自Whyte, W. (2004))
【4】 白坤鼎(2011),「建築物人員避難安全評估與FDS+Evac電腦模擬之應用研究-以大型展覽館為例」, 吳鳳科技大學消防研究所碩士論文。
【5】 行政院內政部消防署(1999),「各類場所消防安全設備設置標準」。
【6】 行政院內政部營建署(2002),「建築技術規則設計施工編」。
【7】 羅來佑(2008),「三維風險分析技術應用在高科技廠房之危害性氣體洩漏暨預防損失之研究」,雲林科技大學環境與安全工程系碩士論文。
【8】 柯建明(2003),「大型車站建築之火災煙控系統設計與電腦模擬分析」,國立中山大學機械與機電工程學系研究所碩士論文。
【9】 張勝凱(2001),「半導體廠災害應變模式之探討」,國立臺灣大學機械工程學研究所碩士論文。
【10】 陳朝慶(2000),「無塵室火災模擬」,中山大學機械工程學系研究所碩士論文。
【11】 黃裕霖(2002) ,「半導體廠潔淨室火場數值模型之研究」,國立臺灣大學機械工程學研究所碩士論文。
【12】 黃雄義(2005) ,「以FDS預測ISO9705房間試驗火場情境之可行性研究」,國立高雄第一科技大學環境與安全衛生工程所碩士論文。
【13】 經濟部工業局(2007),「工業廠房消防安全性能化設計技術手冊」,台北市,經濟部工業局。
【14】 賴葦芸(2000),「高科技廠房防火安全性能研究-避難安全評估」,國立交通大學機械工程系碩士論文。
【15】 Atkinson, G.(1995), “Smoke Movement Driven by a Fire Under a Ceiling”, Fire Safety Journal, vol.25, pp.261-275.
【16】 Cheng, M., Liu, G.R., Lam, K.Y., Cai, W.J., and Lee, E.L.(1999), “Approaches for Improving Airflow Uniformity in Unidirectional Flow Cleanrooms”, Building and Environment, vol.34(2), pp.275-284.
【17】 Che Tzu Lin, Silcock, G.W.H., Delichatsios, M.A.(2007), “Flame interactions and smoke containment by downward displacement ventilation”, Combustion and Flame, vol.150, pp.210–219.
【18】 Deng Jr Peng, Yih Shing Duh, Chi Min Shu(2006), “Wet bench reactive hazards of cleaning stages in semiconductor manufacturing processes”, Journal of Loss Prevention in the Process Industries, vol.19 , pp.743–753.
【19】 Federal Standard 209E(1992), “Airborne particulate cleanliness classes for cleanrooms and clean zones”, Illinois, U.S.General Services Administration.
【20】 Floyd, J.E., Wieczorek, C., and Vandsburger, U.(2001), “Simulation of the Virginia Tech Fire Research Laboratory Using Large Eddy-Simulation with Mixture Fraction Chemistry and Finite Volume Radiative Heat Transfer”, Ninth International Fire Science and Engineering Conference, vol.1. pp.17-19.
【21】 Floyd, J.E., McGrattan, K.B., Hostikka, S., and Baum, H.R.(2003), “CFD Fire Simulation Using Mixture Fraction Combustion and Finite Volume Radiative Heat Transfer”, Journal of Fire Protection Engineering, vol.13.
【22】 Forney, G.P.(2010), “Smokeview(Version 5)-A Tool for Visualizing Fire Dynamics Simulation Data Volume I: User’s Guide”, National Institute of Standards and Technology Special Publication.
【23】 Hu, S.C., Wu, Y.Y., and Liu, C.J.(1996), “Measurements of Air Flow Characteristics In a Full-Scale Clean Room”, Building and Environment, vol.31, pp.119-128.
【24】 Heskestad, G. and Lutton, J.C.(1997), “Novel Smoke/Flume Control for Cleanroom”, FMRC Technical Report, N.O.J.I.OBOJ1.RU.
【25】 Huo, Y., Gao, Y., Wu, H.M., Zhao, J.H.(2009), “The Characteristics of Temperature Near the Ceiling of Liquid Fires in Vertical Laminar Clean Room Environments”, IEEE.
【26】 International Standard ISO 14644-1(1999), “Cleanrooms and Associated Controlled Environments - Part 1:Classification of Air Cleanliness”, New York, International Organization for Standardization.
【27】 Kathy, A. and William, D.(1993), “The use of computer models to predict temperature and smoke movement in high bay spaces”, NISTIR 5304.
【28】 McGrattan, K.B., Baum, H.R., and Hamins Anthony(2000), “Thermal Radiation from Large Pool Fires”, NISTIR 6546.
【29】 Musser, A. and McGrattan, K.(2002), “Evaluation of a Fast Large-Eddy-Simulation Model for Indoor Airflows”, Journal of Architectural Engineering, vol.8, pp.10-18.
【30】 Ma, T.G. and Quintiere, J.G.(2003), “Numerical Simulation of Axi-Symmetric Fire Plumes: Accuracy and Limitations”, Fire Safety Journal, vol.38, pp.467-492.
【31】 McGrattan, K.B.(2010), “Fire Dynamics Simulator (Version 5) User’s Guide”, National Institute of Standards and Technology Special Publication.
【32】 SoonilNam(2000), “Numerical Simulation of Smoke movement In Cleanroom Environment”, Fire Safety Journal, vol.34, pp.169-189.
【33】 Sung Ryong Lee, Hong Sun Ryou(2006), “A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio”, Building and Environment , vol.41, pp.719–725.
【34】 Shih Cheng Hu, Chao Ching Chen(2007), “Locating the very early smoke detector apparatus (VESDA)in vertical laminar clean rooms according to the trajectories of smoke particles”, Building and Environment, vol.42, pp.366–371.
【35】 Wen, J.X., Kang, K., Donchev, T. and Karwatzki, J.M.(2007), “Validation of FDS for the Prediction of Medium-Scale Pool Fires”, Fire Safety Journal, vol.42, pp.127-138.
【36】 Wen Yao Chang, Ping Kun Fu, Chiun Hsun Chen, Yi Liang Shu(2007), “Performance evaluation of a water mist system in semiconductor wet bench fires”, Process Safety And Environmental Protection , vol.86, pp.213-218.
【37】 YetPole I, YiLong Chiu, Shi JenWu(2008), “The simulation of air recirculation and fire/explosion phenomena within a semiconductor factory”, Journal of Hazardous Materials.
【38】 Zhang, W., Hamer, A., Klassen, M., Carpenter, D. and Roby, R.(2002), “Turbulence Statistics in a Fire Room Model by Large Eddy Simulation”, Fire Safety Journal, vol.37, pp.721-752.
【39】 Zou, G.W. and Chow, W.K.(2005), “Evaluation of the Field Model, Fire Dynamics Simulation, for a Specific Experimental Scenario”, Journal of Fire Protection Engineering, vol.15, pp.77-92.
校內:2015-06-17公開