簡易檢索 / 詳目顯示

研究生: 蘇宸毅
Su, Chen-Yi
論文名稱: 液滴起電之等效電路模型探討與汙水感測應用
Experimental Investigation of Droplet-Based Electrification by Equivalent Electric Circuit Model and Sewage Sensing Application
指導教授: 何青原
Ho, Ching-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 水滴奈米起電機電雙層質點網格法
外文關鍵詞: droplet-base electricity nanogenerator, electric double layer, particle-in-cell method
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製作了一個由玻璃底板、金屬下電極、鐵氟龍薄膜、以及導電上電極所製成的三明治結構試片,將水滴滴落於其上,發現在上下電極之間會產生一個電壓訊號,故將此裝置稱為滴水生電裝置。在此描述一個典型的輸出電壓訊號,當水滴觸碰到同時觸碰到鐵氟龍與上電極時,產生一個瞬間的輸出電壓,並以對數衰減,轉為反向電壓,當水滴離開鐵氟龍時,輸出歸零。
    此研究以一個自然對數衰減的曲線與反向的線性方程式的組合對輸出電壓訊號進行擬合,獲得高度的一致性,並由此推測出本裝置的等效電路模型。當水滴落在滴水生電裝置並同時觸碰到鐵氟龍與上電極時,可等效為六元件的閉路電路,含有四個電容與二個電阻元件。上電極的寬度、形式,以及滴水的高度皆被改變,藉以得出更清楚的等效電路模型。實驗結果顯示,在水/鐵氟龍、水/上電極介面所形成的二個電雙層電容,皆可在討論RC電路衰減時忽略。同時,由上電極/鐵氟龍/下電極、水滴/鐵氟龍/下電極所構成的二個電容,則不可忽略。水滴同時觸碰到鐵氟龍與上電極時,其與鐵氟龍的接觸面積,對於裝置電壓訊號的最大輸出、衰減、反轉有著重大的影響,其中,最大輸出電壓與衰減由此面積所控制,反向電壓則是由此面積的變化率所決定。
    除了等效電路外,水溶液的離子濃度、離子價數對於裝置發電效率的影響也在此討論。實驗結果顯示,當鹽水的濃度越高,其裝置輸出電壓越低;使用二種不同價數的水溶液做比較,在濃度相同時,價數較高者,裝置輸出電壓較低。將此現象與德拜長度連結,發現當德拜長度越長,其裝置輸出電壓越高,而德拜長度正是用來描述電雙層厚度的特徵長度。此結果顯示,雖然電雙層對於RC電路衰減時間沒有影響,卻是決定最大瞬間輸出電壓的因素。

    Droplet impact a sandwich structure, which comprises of a polytetrafluoroethylene film (PTFE) on aluminum substrate plus a conductive top electrode, and forms the droplet-based electricity generator (DEG). A specific output voltage curve exhibits instantaneously peak, then relax (decade to 36.8 %), turn to negative, finally return to origin as droplet contacts the electrode. The equivalent electric circuit (EEC) consisted of resistance-capacitor (RC) circuit relaxation and linear volt-time curve achieves good correlation with output curve, it helps to illustrate the DEG theory. During an impinged droplet spreading on the PTFE and top electrode, four capacitors and two resistances are formed to create EEC model. The experimental results show that electrical double-layer capacitors (EDLC) contains C1 and C2 are the interfaces of droplet / PTFE and droplet / top electrode, respectively, can be neglected. The top electrode / PTFT / substrate (Ce) and droplet / PTFE / substrate capacitor (Cd) are parallel connected, dominate instantaneously voltage behaviors, relaxation time and reversely return to origin. Besides, relaxation time and reverse voltage are controlled by droplet area and rate of droplet area change, respectively. The salt water with difference concentration are also identify. The instantaneously peak voltage is inversely proportional to the salt water concentrations, meanwhile, the RC circuit relaxation time is independent of concentrations. This phenomenon clearly demonstrates that higher EDLC generated by concentration of salt water doesn’t impact the relax behavior but instantaneously peak voltage is affected.

    摘要 I Extend Abstract II 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XII 一、前言 1 二、文獻回顧 3 2-1 早期研究 3 2-2 石墨稀表面 5 2-3 鐵氟龍表面 15 2-4 研究動機 24 三、實驗方法與數值模型 25 3-1 實驗方法與步驟 25 3-1-1實驗規劃 25 3-2-1實驗裝置 26 3-1-2 試片結構 28 3-2 電雙層理論 31 3-2-1電雙層理論的歷史 31 3-2-2電雙層模型的假設 32 3-2-3布朗運動與電雙層的形成 33 3-2-4德拜長度 33 3-3 數值模型 36 3-3-1一維靜電學模型 36 3-3-2電雙層與泊松方程式 38 3-3-3 數值模擬的基本假設 40 3-4 質點網格法 40 3-4-1 原則與步驟 40 3-4-2 邊界設定 42 3-4-3 初始位置與初始速度 42 3-4-4 粒子的移動 44 3-4-5 計算粒子密度 44 3-4-6 泊松方程式數值解 45 3-4-7 自洽電場 46 3-4-8 電場所造成的粒子速度改變 46 3-4-9 模擬可靠性 47 四、結果與討論 49 4-1 不同裝置結構與等效電路 49 4-1-1 上電極很長的試片 49 4-1-2 改變上電極長度 56 4-1-3改變上電極形式 63 4-1-4 改變水滴撞擊位置 67 4-1-5 改變滴水高度 71 4-2 不同水溶液與起電機制 76 4-2-1改變鹽水濃度 76 4-2-2 質點網格法模擬 80 4-2-3氯化鈉與硫酸銅 87 4-2-4 含顏料廢水 89 五、結論 94 六、參考文獻 97

    1. H.V. Helmholtz., “Studien über Elektrische Grenzschichten,” Wiedemann ́s Annual Physical Chemistry, 7, pp. 337–382, 1879
    2. D. Shaw, “Intro to Colloid Surface Chemistry,” Fourth Edition, Butterworth-Heinemann, pp. 174-185, 1992
    3. D.C. Grahame, “The electrical double layer and the theory of electrocapillarity”, Chemical Reviews, 41, 3, pp. 441–501, 1947
    4. D.R. Nicholson, “Introduction to Plasma Theory,” Krieger, pp. 1-7, 1992
    5. M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharge and Materials Processing,” Second Edition, Wiley, pp.1-22, pp.165-206, 2005
    6. A. Einstein, “Investigation on the theory of the Brownian movement,” Annalen der Physik, 1906
    7. T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,” Journal of Computational Physics, Volume 25, Issue 3, pp. 205-219, 1977
    8. F.H. Harlow, “The particle-in-cell method for numerical solution of problems in fluid dynamics,” United States: N. p., 1962. Web. doi:10.2172/4769185.
    9. M. Schwartz, “Principles of Electrodynamics,” Dover Publications, 1987
    10. D.J. Griffiths, “Introduction to Electrodynamics,” Fourth Edition, Cambridge University Press, 2017
    11. D.K. Cheng, “Field and Wave Electromagnetics,” Second Edition, Addison-Wesley, 1989
    12. W. Thomson, “On a self-acting apparatus for multiplying and maintaining electric charges, with applications to illustrate the voltaic theory,” Royal Society, 1867
    13. Z. Lin, G. Chen, S. Lee, K.C. Pradel, and Z. Wang, “Harvesting Water Drop Energy by a Sequential Contact‐Electrification and Electrostatic‐Induction Process,” Advance Materials, Volume 26, Issue 27, pp. 4690-4696, 2014
    14. W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, R.X. Xu, Z.L. Wang, X.C. Zeng, and Z. Wang, “A droplet-based electricity generator with high instantaneous power density,” Nature, 578, pp. 392–396, 2020
    15. K. Yatsuzuka, Y. Mizuno, and K. Asano, “Electrification phenomena of pure water droplets dripping and sliding on a polymer surface,” Journal of Electrostatics, Volume 32, Issue 2, pp. 157-171, 1994
    16. J. Yin, X. Lin, J. Yu, Z. Zhang, J. Zhou, and W. Guo, “Generating electricity by moving a droplet of ionic liquid along graphene,” Nature Nanotechnology, 9, pp. 378–383, 2014
    17. S. Kwak, S. Lin, J. Lee, H. Ryu, T. Kim, H. Zhong, H. Chen, and S. Kim, “Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene,” ACS Nano, Volume 10, Issue 8, pp. 7297–7302, 2016
    18. C. Chang, W. Huang, V. Mai, J. Tsai, and R. Yang, “Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide,” Energy, Volume 229, p. 120715, 2021
    19. H. Wu, N. Mendel, D. van den Ende, G. Zhou, and F. Mugele, “Energy harvesting from drops impacting onto charged surfaces,” Physical Review Letters, 125, p. 078301, 2020
    20. N.A. Patankar and H. Hu, “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Volume 70, Issue 9, pp. 1870–1881, 1998
    21. M.E.J. Newman and G.T. Barkema, “Monte Carlo Methods in Statistical Physics,” Springer, pp. 388-399, 2010
    22. M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions,” Dover, pp. 933, 1970
    23. 陳彥樵, “以質點網格法模擬電容耦合電漿在具有庫倫碰撞及二次電子發射下之行為,” 碩士論文, 國立成功大學太空與電漿科學研究所, 2015
    24. 林泰錄, “以粒子網格法模擬電容耦合電漿在二維渠溝幾何下之行為,” 碩士論文, 國立成功大學太空與電漿科學研究所, 2016
    25. M. Lieberman and A.J. Lichtenberg, “Regular and Chaotic Dynamics,” Springer, pp. 565, 1992
    26. C. Huang, Y. Chen, and Y. Nishimura, “Particle-in-cell simulation of plasma sheath dynamics with kinetic ions,” IEEE Transactions on Plasma Science, 42, 2015
    27. H. Cai, Y. Guo, and W. Guo, “Synergistic effect of substrate and ion-containing water in graphene based hydrovoltaic generators,” Nano Energy, Volume 84, p. 105939, 2021
    28. S. Lin, X. Chen, and Z. Wang, “Contact Electrification at the Liquid–Solid Interface,” Chemical Reviews, 122, 5, pp. 5209–5232, 2022
    29. W. Cheney and D. Kincaid, “Numerical Mathematics and Computing,” Cengage learning, p. 480, 2012
    30. 陳志龍, “結合有限元素法和PIC法模擬帶電粒子在毛細管電泳中之遷移,” 碩士論文, 國立成功大學機械工程學系, 2008
    31. 卓慶章, “考慮滑動邊界影響下微渠道內電滲流流場特性分析,” 碩士論文, 國立成功大學機械工程學系, 2004
    32. 蔡佳璇, “電解液流經石墨稀誘導出電流的研究,” 碩士論文, 國立成功大學工程科學系, 2020
    33. 張志彰, “微管道電滲流流場之壓力分佈與混合機制分析,” 碩士論文, 國立成功大學工程科學系, 2003
    34. 傅龍明, “微晶片電滲流場之分析與應用,” 博士論文, 國立成功大學工程科學系, 2001
    35. S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy Future,” Nature, 488, pp. 294–303, 2012
    36. S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nature Materials, 16, pp. 16–22, 2017
    37. F. Liu, M. Fang, W. Dong, T. Wang, Z. Xia, Q. Wang, and Z. Luo, “Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation,” Applied Energy, Volumes 233–234, pp. 468-477, 2019
    38. K. Alann and S. Cao, “An overview of the concept and technology of ubiquitous Energy,” Applied Energy, Volume 238, pp. 284-302, 2019
    39. Y. Sun, V. Mai, and R. Yang, “Effects of electrode placement position and tilt angles of a platform on voltage induced by NaCl electrolyte flowing over graphene wafer,” Applied Energy, Volume 261, p. 114435, 2020
    40. Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei, M. Xue, Q. Wang, J. Zhou, and W. Guo, “Emerging hydrovoltaic technology,” Nature Nanotechnology, 13, pp. 1109–1119, 2018
    41. J. Yin, J. Zhou, S. Fang, and W. Guo, “Hydrovoltaic energy on the way,” Joule, Volume 4, Issue 9, pp. 1852-1855, 2020
    42. W. Sun, Y. Zheng, T. Li, M. Feng, S. Cui, Y. Liu, S. Chen, and D. Wang, “Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection,” Energy, Volume 217, p. 119388, 2021
    43. Q. Tang, H. Zhang, B. He, and P. Yang, “An all-weather solar cell that can harvest energy from sunlight and rain,” Nano Energy, Volume 30, pp. 818-824, 2016
    44. Y. Zhang, Q. Tang, B. He, and P. Yang, “Graphene enabled all-weather solar cells for electricity harvest from sun and rain,” Journal of Materials Chemistry A, 4, pp. 13235-13241, 2016
    45. H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun, “Electrosorption behavior of graphene in NaCl solutions,” Journal of Materials Chemistry, 19, pp. 6773-6779 2009
    46. J. Yin, Z. Zhang, X. Li, J. Yu, J. Zhou, Y. Chen, and W. Guo, “Waving potential in graphene,” Nature Communications, 5, Article number: 3582, 2014
    47. Z. Xie and Y. Jian, “Electrokinetic energy conversion of nanofluids in MHD-based microtube,” Energy, Volume 212, p. 118711, 2020
    48. J. Kim, J. Cho, J. Jhun, G. Song, J. Eom, S. Jeong, W. Hwang, M. Woo, and T. Sung, “Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform,” Energy, Volume 222, p. 119845, 2021
    49. D. Park, S. Won, K. Kim, J. Jung, J. Choi, and J. Nah, “The influence of substrate-dependent triboelectric charging of graphene on the electric potential generation by the flow of electrolyte droplets,” Nano Energy, Volume 54, pp. 66-72, 2018
    50. Y. Zhao, Z. Pang, J. Duan, Y. Duan, Z. Jiao, and Q. Tang, “Self-powered monoelectrodes made from graphene composite films to harvest rain energy,” Energy, Volume 158, pp. 555-563, 2018
    51. J. Yin, Z. Zhang, X. Li, J. Zhou, and W. Guo, “Harvesting energy from water flow over graphene?” Nano Letters, 12, 3, pp. 1736–1741, 2012
    52. J.H. Lee, S. Kim, T.Y. Kim, U. Khan, and S.W. Kim, “Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces,” Nano Energy, Volume 58, pp. 579-584, 2019
    53. B.K. Yun, H.S. Kim, Y.J. Ko, G. Murillo, and J.H. Jung, “Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water,” Nano Energy, Volume 36, pp. 233-240, 2017
    54. Y. Suzuki, “Recent progress in MEMS electret generator for energy harvesting,” IEEJ Transactions on Electrical and Electronic Engineering, Volume 6, Issue 2, pp. 101-111, 2011
    55. S.B. Jeon, D. Kim, G.W. Yoon, J.B. Yoon, and Y.K. Choi, “Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight,” Nano Energy, Volume 12, pp. 636-645, 2015
    56. J. Scruggs and P. Jacob, “Harvesting ocean wave energy,” Science, 323(5918):1176-8, 2009
    57. X. Chen, D. Goodnight, Z. Gao, A.H. Cavusoglu, N. Sabharwal, M. DeLay, A. Driks, and O. Sahin, “Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators,” Nature Communications, 6, Article number: 7346, 2015
    58. J. Nie, Z. Wang, Z. Ren, S. Li, X. Chen, and Z. Wang, “Power generation from the interaction of a liquid droplet and a liquid Membrane,” Nature Communications, 10, Article number: 2264, 2019
    59. Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao, H. Yao, G. Shi, and L. Qu, “Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts,” Nature Communications, 9, Article number: 4166, 2018
    60. Q. Sun, D. Wang, Y. Li, J. Zhang, S. ye, J. Cui, L. Chen, Z. Wang, H. Butt, D. Vollmer, and X. Deng, “Surface charge printing for programmed droplet transport,” Nature Materials, 18, pp. 936–941, 2019
    61. G. Xue, Y. Xu, T. Ding, J. Li, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou, and W. Guo, “Water-evaporation-induced electricity with nanostructured carbon Materials,” Nature Nanotechnology, 12, pp. 317–321, 2017
    62. W. Tang, B. Chen, and Z. Wang, “Recent Progress in Power Generation from Water/Liquid Droplet Interaction with Solid Surfaces,” Advanced Functional Materials, Volume 29, Issue 41, p. 1901069, 2019
    63. Y. Wang, S. Gao, W. Xu, and Z. Wang, “Nanogenerators with Superwetting Surfaces for Harvesting Water/Liquid Energy,” Advanced Functional Materials, Volume 30, Issue 26, p. 1908252, 2020
    64. W. Qu and D. Li, “A model for overlapped EDL field,” Journal of Colloid and Interface Science, Volume 224, Issue 2, pp. 397-407, 2000
    65. G. McNamara and G. Zanetti, “Use of the Boltzmann equation to simulate lattice-gas automata,” Physical Review Letters, 61, p. 2332, 1988
    66. L. Fu, J. Lin, and R. Yang, “Analysis of electroosmotic flow with step change in zeta potential,” Journal of Colloid and Interface Science, Volume 258, Issue 2, pp. 266-275, 2003
    67. L. Hu, J.D. Harrison, and J.H. Masliyah,” Numerical model of electrokinetic flow for capillary electrophoresis,” Journal of Colloid and Interface Science, 215(2), pp. 300-312, 1999
    68. R.W. Hockney, and J.W. Eastwood, “Computer Simulation Using Particles,” Institute of Physics Publishing Ltd., 1988
    69. J.M. Dawson, “Particle Simulation of Plasma,” Reviews of Modern Physics, 55, 403, 1983
    70. C.L. Rice, and R. Whitehead, “Electrokinetic Flow in a Narrow Capillary,” The Journal of Physical Chemistry, 69, 11, p. 4017–4024, 1965
    71. D.J. Harrison, A. Manz, Z. Fan, and H. Ludi, “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, 64, 17, pp. 1926–1932, 1992
    72. Y. Huang, X. Wang, R. Pethig, “Electrokinetic behaviour of colloidal particles in traveling electric fields: studies using yeast cells,” Journal of Physics D: Applied Physics, 26, p. 1528, 1993
    73. C.T. O’Konski, “Electric properties of macromolecules V: theory of ionic polarization in polyelectrolytes,” Journal of Physical Chemistry, 64, 5, pp. 605–619, 1960

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE