| 研究生: |
蘇宸毅 Su, Chen-Yi |
|---|---|
| 論文名稱: |
液滴起電之等效電路模型探討與汙水感測應用 Experimental Investigation of Droplet-Based Electrification by Equivalent Electric Circuit Model and Sewage Sensing Application |
| 指導教授: |
何青原
Ho, Ching-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 水滴奈米起電機 、電雙層 、質點網格法 |
| 外文關鍵詞: | droplet-base electricity nanogenerator, electric double layer, particle-in-cell method |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製作了一個由玻璃底板、金屬下電極、鐵氟龍薄膜、以及導電上電極所製成的三明治結構試片,將水滴滴落於其上,發現在上下電極之間會產生一個電壓訊號,故將此裝置稱為滴水生電裝置。在此描述一個典型的輸出電壓訊號,當水滴觸碰到同時觸碰到鐵氟龍與上電極時,產生一個瞬間的輸出電壓,並以對數衰減,轉為反向電壓,當水滴離開鐵氟龍時,輸出歸零。
此研究以一個自然對數衰減的曲線與反向的線性方程式的組合對輸出電壓訊號進行擬合,獲得高度的一致性,並由此推測出本裝置的等效電路模型。當水滴落在滴水生電裝置並同時觸碰到鐵氟龍與上電極時,可等效為六元件的閉路電路,含有四個電容與二個電阻元件。上電極的寬度、形式,以及滴水的高度皆被改變,藉以得出更清楚的等效電路模型。實驗結果顯示,在水/鐵氟龍、水/上電極介面所形成的二個電雙層電容,皆可在討論RC電路衰減時忽略。同時,由上電極/鐵氟龍/下電極、水滴/鐵氟龍/下電極所構成的二個電容,則不可忽略。水滴同時觸碰到鐵氟龍與上電極時,其與鐵氟龍的接觸面積,對於裝置電壓訊號的最大輸出、衰減、反轉有著重大的影響,其中,最大輸出電壓與衰減由此面積所控制,反向電壓則是由此面積的變化率所決定。
除了等效電路外,水溶液的離子濃度、離子價數對於裝置發電效率的影響也在此討論。實驗結果顯示,當鹽水的濃度越高,其裝置輸出電壓越低;使用二種不同價數的水溶液做比較,在濃度相同時,價數較高者,裝置輸出電壓較低。將此現象與德拜長度連結,發現當德拜長度越長,其裝置輸出電壓越高,而德拜長度正是用來描述電雙層厚度的特徵長度。此結果顯示,雖然電雙層對於RC電路衰減時間沒有影響,卻是決定最大瞬間輸出電壓的因素。
Droplet impact a sandwich structure, which comprises of a polytetrafluoroethylene film (PTFE) on aluminum substrate plus a conductive top electrode, and forms the droplet-based electricity generator (DEG). A specific output voltage curve exhibits instantaneously peak, then relax (decade to 36.8 %), turn to negative, finally return to origin as droplet contacts the electrode. The equivalent electric circuit (EEC) consisted of resistance-capacitor (RC) circuit relaxation and linear volt-time curve achieves good correlation with output curve, it helps to illustrate the DEG theory. During an impinged droplet spreading on the PTFE and top electrode, four capacitors and two resistances are formed to create EEC model. The experimental results show that electrical double-layer capacitors (EDLC) contains C1 and C2 are the interfaces of droplet / PTFE and droplet / top electrode, respectively, can be neglected. The top electrode / PTFT / substrate (Ce) and droplet / PTFE / substrate capacitor (Cd) are parallel connected, dominate instantaneously voltage behaviors, relaxation time and reversely return to origin. Besides, relaxation time and reverse voltage are controlled by droplet area and rate of droplet area change, respectively. The salt water with difference concentration are also identify. The instantaneously peak voltage is inversely proportional to the salt water concentrations, meanwhile, the RC circuit relaxation time is independent of concentrations. This phenomenon clearly demonstrates that higher EDLC generated by concentration of salt water doesn’t impact the relax behavior but instantaneously peak voltage is affected.
1. H.V. Helmholtz., “Studien über Elektrische Grenzschichten,” Wiedemann ́s Annual Physical Chemistry, 7, pp. 337–382, 1879
2. D. Shaw, “Intro to Colloid Surface Chemistry,” Fourth Edition, Butterworth-Heinemann, pp. 174-185, 1992
3. D.C. Grahame, “The electrical double layer and the theory of electrocapillarity”, Chemical Reviews, 41, 3, pp. 441–501, 1947
4. D.R. Nicholson, “Introduction to Plasma Theory,” Krieger, pp. 1-7, 1992
5. M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharge and Materials Processing,” Second Edition, Wiley, pp.1-22, pp.165-206, 2005
6. A. Einstein, “Investigation on the theory of the Brownian movement,” Annalen der Physik, 1906
7. T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,” Journal of Computational Physics, Volume 25, Issue 3, pp. 205-219, 1977
8. F.H. Harlow, “The particle-in-cell method for numerical solution of problems in fluid dynamics,” United States: N. p., 1962. Web. doi:10.2172/4769185.
9. M. Schwartz, “Principles of Electrodynamics,” Dover Publications, 1987
10. D.J. Griffiths, “Introduction to Electrodynamics,” Fourth Edition, Cambridge University Press, 2017
11. D.K. Cheng, “Field and Wave Electromagnetics,” Second Edition, Addison-Wesley, 1989
12. W. Thomson, “On a self-acting apparatus for multiplying and maintaining electric charges, with applications to illustrate the voltaic theory,” Royal Society, 1867
13. Z. Lin, G. Chen, S. Lee, K.C. Pradel, and Z. Wang, “Harvesting Water Drop Energy by a Sequential Contact‐Electrification and Electrostatic‐Induction Process,” Advance Materials, Volume 26, Issue 27, pp. 4690-4696, 2014
14. W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, R.X. Xu, Z.L. Wang, X.C. Zeng, and Z. Wang, “A droplet-based electricity generator with high instantaneous power density,” Nature, 578, pp. 392–396, 2020
15. K. Yatsuzuka, Y. Mizuno, and K. Asano, “Electrification phenomena of pure water droplets dripping and sliding on a polymer surface,” Journal of Electrostatics, Volume 32, Issue 2, pp. 157-171, 1994
16. J. Yin, X. Lin, J. Yu, Z. Zhang, J. Zhou, and W. Guo, “Generating electricity by moving a droplet of ionic liquid along graphene,” Nature Nanotechnology, 9, pp. 378–383, 2014
17. S. Kwak, S. Lin, J. Lee, H. Ryu, T. Kim, H. Zhong, H. Chen, and S. Kim, “Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene,” ACS Nano, Volume 10, Issue 8, pp. 7297–7302, 2016
18. C. Chang, W. Huang, V. Mai, J. Tsai, and R. Yang, “Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide,” Energy, Volume 229, p. 120715, 2021
19. H. Wu, N. Mendel, D. van den Ende, G. Zhou, and F. Mugele, “Energy harvesting from drops impacting onto charged surfaces,” Physical Review Letters, 125, p. 078301, 2020
20. N.A. Patankar and H. Hu, “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Volume 70, Issue 9, pp. 1870–1881, 1998
21. M.E.J. Newman and G.T. Barkema, “Monte Carlo Methods in Statistical Physics,” Springer, pp. 388-399, 2010
22. M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions,” Dover, pp. 933, 1970
23. 陳彥樵, “以質點網格法模擬電容耦合電漿在具有庫倫碰撞及二次電子發射下之行為,” 碩士論文, 國立成功大學太空與電漿科學研究所, 2015
24. 林泰錄, “以粒子網格法模擬電容耦合電漿在二維渠溝幾何下之行為,” 碩士論文, 國立成功大學太空與電漿科學研究所, 2016
25. M. Lieberman and A.J. Lichtenberg, “Regular and Chaotic Dynamics,” Springer, pp. 565, 1992
26. C. Huang, Y. Chen, and Y. Nishimura, “Particle-in-cell simulation of plasma sheath dynamics with kinetic ions,” IEEE Transactions on Plasma Science, 42, 2015
27. H. Cai, Y. Guo, and W. Guo, “Synergistic effect of substrate and ion-containing water in graphene based hydrovoltaic generators,” Nano Energy, Volume 84, p. 105939, 2021
28. S. Lin, X. Chen, and Z. Wang, “Contact Electrification at the Liquid–Solid Interface,” Chemical Reviews, 122, 5, pp. 5209–5232, 2022
29. W. Cheney and D. Kincaid, “Numerical Mathematics and Computing,” Cengage learning, p. 480, 2012
30. 陳志龍, “結合有限元素法和PIC法模擬帶電粒子在毛細管電泳中之遷移,” 碩士論文, 國立成功大學機械工程學系, 2008
31. 卓慶章, “考慮滑動邊界影響下微渠道內電滲流流場特性分析,” 碩士論文, 國立成功大學機械工程學系, 2004
32. 蔡佳璇, “電解液流經石墨稀誘導出電流的研究,” 碩士論文, 國立成功大學工程科學系, 2020
33. 張志彰, “微管道電滲流流場之壓力分佈與混合機制分析,” 碩士論文, 國立成功大學工程科學系, 2003
34. 傅龍明, “微晶片電滲流場之分析與應用,” 博士論文, 國立成功大學工程科學系, 2001
35. S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy Future,” Nature, 488, pp. 294–303, 2012
36. S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nature Materials, 16, pp. 16–22, 2017
37. F. Liu, M. Fang, W. Dong, T. Wang, Z. Xia, Q. Wang, and Z. Luo, “Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation,” Applied Energy, Volumes 233–234, pp. 468-477, 2019
38. K. Alann and S. Cao, “An overview of the concept and technology of ubiquitous Energy,” Applied Energy, Volume 238, pp. 284-302, 2019
39. Y. Sun, V. Mai, and R. Yang, “Effects of electrode placement position and tilt angles of a platform on voltage induced by NaCl electrolyte flowing over graphene wafer,” Applied Energy, Volume 261, p. 114435, 2020
40. Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei, M. Xue, Q. Wang, J. Zhou, and W. Guo, “Emerging hydrovoltaic technology,” Nature Nanotechnology, 13, pp. 1109–1119, 2018
41. J. Yin, J. Zhou, S. Fang, and W. Guo, “Hydrovoltaic energy on the way,” Joule, Volume 4, Issue 9, pp. 1852-1855, 2020
42. W. Sun, Y. Zheng, T. Li, M. Feng, S. Cui, Y. Liu, S. Chen, and D. Wang, “Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection,” Energy, Volume 217, p. 119388, 2021
43. Q. Tang, H. Zhang, B. He, and P. Yang, “An all-weather solar cell that can harvest energy from sunlight and rain,” Nano Energy, Volume 30, pp. 818-824, 2016
44. Y. Zhang, Q. Tang, B. He, and P. Yang, “Graphene enabled all-weather solar cells for electricity harvest from sun and rain,” Journal of Materials Chemistry A, 4, pp. 13235-13241, 2016
45. H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun, “Electrosorption behavior of graphene in NaCl solutions,” Journal of Materials Chemistry, 19, pp. 6773-6779 2009
46. J. Yin, Z. Zhang, X. Li, J. Yu, J. Zhou, Y. Chen, and W. Guo, “Waving potential in graphene,” Nature Communications, 5, Article number: 3582, 2014
47. Z. Xie and Y. Jian, “Electrokinetic energy conversion of nanofluids in MHD-based microtube,” Energy, Volume 212, p. 118711, 2020
48. J. Kim, J. Cho, J. Jhun, G. Song, J. Eom, S. Jeong, W. Hwang, M. Woo, and T. Sung, “Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform,” Energy, Volume 222, p. 119845, 2021
49. D. Park, S. Won, K. Kim, J. Jung, J. Choi, and J. Nah, “The influence of substrate-dependent triboelectric charging of graphene on the electric potential generation by the flow of electrolyte droplets,” Nano Energy, Volume 54, pp. 66-72, 2018
50. Y. Zhao, Z. Pang, J. Duan, Y. Duan, Z. Jiao, and Q. Tang, “Self-powered monoelectrodes made from graphene composite films to harvest rain energy,” Energy, Volume 158, pp. 555-563, 2018
51. J. Yin, Z. Zhang, X. Li, J. Zhou, and W. Guo, “Harvesting energy from water flow over graphene?” Nano Letters, 12, 3, pp. 1736–1741, 2012
52. J.H. Lee, S. Kim, T.Y. Kim, U. Khan, and S.W. Kim, “Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces,” Nano Energy, Volume 58, pp. 579-584, 2019
53. B.K. Yun, H.S. Kim, Y.J. Ko, G. Murillo, and J.H. Jung, “Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water,” Nano Energy, Volume 36, pp. 233-240, 2017
54. Y. Suzuki, “Recent progress in MEMS electret generator for energy harvesting,” IEEJ Transactions on Electrical and Electronic Engineering, Volume 6, Issue 2, pp. 101-111, 2011
55. S.B. Jeon, D. Kim, G.W. Yoon, J.B. Yoon, and Y.K. Choi, “Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight,” Nano Energy, Volume 12, pp. 636-645, 2015
56. J. Scruggs and P. Jacob, “Harvesting ocean wave energy,” Science, 323(5918):1176-8, 2009
57. X. Chen, D. Goodnight, Z. Gao, A.H. Cavusoglu, N. Sabharwal, M. DeLay, A. Driks, and O. Sahin, “Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators,” Nature Communications, 6, Article number: 7346, 2015
58. J. Nie, Z. Wang, Z. Ren, S. Li, X. Chen, and Z. Wang, “Power generation from the interaction of a liquid droplet and a liquid Membrane,” Nature Communications, 10, Article number: 2264, 2019
59. Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao, H. Yao, G. Shi, and L. Qu, “Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts,” Nature Communications, 9, Article number: 4166, 2018
60. Q. Sun, D. Wang, Y. Li, J. Zhang, S. ye, J. Cui, L. Chen, Z. Wang, H. Butt, D. Vollmer, and X. Deng, “Surface charge printing for programmed droplet transport,” Nature Materials, 18, pp. 936–941, 2019
61. G. Xue, Y. Xu, T. Ding, J. Li, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou, and W. Guo, “Water-evaporation-induced electricity with nanostructured carbon Materials,” Nature Nanotechnology, 12, pp. 317–321, 2017
62. W. Tang, B. Chen, and Z. Wang, “Recent Progress in Power Generation from Water/Liquid Droplet Interaction with Solid Surfaces,” Advanced Functional Materials, Volume 29, Issue 41, p. 1901069, 2019
63. Y. Wang, S. Gao, W. Xu, and Z. Wang, “Nanogenerators with Superwetting Surfaces for Harvesting Water/Liquid Energy,” Advanced Functional Materials, Volume 30, Issue 26, p. 1908252, 2020
64. W. Qu and D. Li, “A model for overlapped EDL field,” Journal of Colloid and Interface Science, Volume 224, Issue 2, pp. 397-407, 2000
65. G. McNamara and G. Zanetti, “Use of the Boltzmann equation to simulate lattice-gas automata,” Physical Review Letters, 61, p. 2332, 1988
66. L. Fu, J. Lin, and R. Yang, “Analysis of electroosmotic flow with step change in zeta potential,” Journal of Colloid and Interface Science, Volume 258, Issue 2, pp. 266-275, 2003
67. L. Hu, J.D. Harrison, and J.H. Masliyah,” Numerical model of electrokinetic flow for capillary electrophoresis,” Journal of Colloid and Interface Science, 215(2), pp. 300-312, 1999
68. R.W. Hockney, and J.W. Eastwood, “Computer Simulation Using Particles,” Institute of Physics Publishing Ltd., 1988
69. J.M. Dawson, “Particle Simulation of Plasma,” Reviews of Modern Physics, 55, 403, 1983
70. C.L. Rice, and R. Whitehead, “Electrokinetic Flow in a Narrow Capillary,” The Journal of Physical Chemistry, 69, 11, p. 4017–4024, 1965
71. D.J. Harrison, A. Manz, Z. Fan, and H. Ludi, “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, 64, 17, pp. 1926–1932, 1992
72. Y. Huang, X. Wang, R. Pethig, “Electrokinetic behaviour of colloidal particles in traveling electric fields: studies using yeast cells,” Journal of Physics D: Applied Physics, 26, p. 1528, 1993
73. C.T. O’Konski, “Electric properties of macromolecules V: theory of ionic polarization in polyelectrolytes,” Journal of Physical Chemistry, 64, 5, pp. 605–619, 1960