| 研究生: |
蘇珮穎 Su, Pei-Ying |
|---|---|
| 論文名稱: |
探討不同退火溫度下高熵合金析出物之尺寸分布對力學性質之影響 The Effect of Particle Size Distribution on Mechanical Properties of High Entropy Alloy at Different Annealing Temperature |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
游濟華
Yu, Chi-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 高熵合金 、CoCrFeMnNi 、晶體塑性有限元素法 、析出強化 、析出物顆粒分布 |
| 外文關鍵詞: | High entropy alloy, crystal plasticity finite element method, particle size distribution, precipitation hardening |
| 相關次數: | 點閱:95 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高熵合金是以多種主元素混合的新型合金,其中最具代表性的為Cantor合金,由等原子CoCrFeNiMn五種主要元素組成,此合金雖由多種元素組成,卻可以形成簡單的固溶相,成為近年來熱門的研究項目,研究發現CoCrFeNiMn合金在特定熱處理條件下會有析出物產生,使合金具備更高的強度及良好的硬化性能,學者們也開始針對其不同元素成分含量、不同熱處理過程、不同添加物進行各種不同的研究,以提升合金析出強化效果。
CoCrFeNiMn合金的強化機制主要源自於析出物與差排間的交互作用,因此,本研究中採用一套基於差排密度的晶體塑性有限元素模型,用以描述合金中因析出物而發生的強化機制,利用多晶代表性體積元素模型,針對非等原子CoCrFeMnNi合金進行拉伸模擬分析,並導入能夠考慮微觀下差排作用及析出物效應的加工硬化模型,用以描述合金中因析出物效應而產生的強化機制。
為了更好的模擬出析出物效應對CoCrFeMnNi合金的影響,我們利用文獻中取得的合金拉伸實驗的數據及SEM-BSE圖,進行TEM分析以得到析出物平均尺寸,並考慮析出物顆粒分布為高斯分布的情況下計算出相關參數,將其與ImageJ圖像分析所得析出物實際分布計算的結果做比較,利用參數模擬反映出應力應變曲線加工硬化行為及析出物對差排的影響,以探討不同的退火溫度下考慮不同析出物顆粒分布的差排密度增長,並解釋材料硬化行為。
最後,調整高斯分布的標準差擬合實驗數據的應力應變曲線,並觀察其拉伸時的微觀變化,並特別討論差排、析出強化效應和析出物顆粒分佈對CoCrFeMnNi合金的影響,利用模擬結果的參數值,迴歸出預測方程式,預測出沒有實驗數據之不同退火溫度下的應力應變曲線,以減少實驗成本並提供合金熱處理設計的參考。
In this study, a set of crystal plasticity finite element methods was established using computational mechanics. We performed tensile simulation analysis of anisoatomic CoCrFeMnNi alloys using a polycrystalline representative volume element model. This simulation is imported into a hardening model that can consider microscopic dislocation and precipitate effects to describe the precipitates strengthening mechanism in the alloy, to be closer to the real mechanical behavior. In previous studies, in order to simplify the analysis we assumed that each precipitate particle was the same size for the calculation, but this approach led to an overestimation of the strength of the alloy. To better express the actual microstructure of the alloy, we consider the particle size distribution of precipitate as Gaussian distribution.
We used the experimental data and SEM-BSE image of the CoCrFeMnNi alloy obtained in the literature, and the data of the precipitates can be obtained by TEM analysis. The parameters related to the precipitates are calculated considering that the particle size distribution of the precipitates is Gaussian distribution. Then, we compare the simulation results with the results of the real distribution obtained by the ImageJ image analysis, and use the parameters to reflect the work hardening behavior of the alloy and the effect of precipitates on dislocation, to explore the dislocation density growth considering different particle size distributions at different annealing temperatures, and to explain the material hardening behavior.
Finally, stress-strain curves are fitted by adjusting the standard deviation of the Gaussian distribution and the prediction equations are regressed using the parameter values of the simulation results that are closest to the experimental stress-strain curves to predict in the absence of experimental stress-strain curve. Using this simulation method can reduce the experimental cost and provide a reference for alloy heat treatment design.
[1]J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6 (5) (2004), pp. 299-303.
[2]Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, et al., Microstructures and properties of high-entropy alloys, Prog Mater Sci, 61 (2014), pp. 1-93.
[3]W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci., 118 (2021), Article 100777.
[4]J.W. Yeh, Recent progress in high-entropy alloys, Ann Chim Sci Mater, 31 (6) (2006), pp. 633-648.
[5]D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater., 123 (2017), pp. 285-294.
[6]Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Apply Phys lett, 90 (18) (2007), p. 181904.
[7]J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high temperature properties, J. Alloy. Compd., 760 (2018), pp. 15-30.
[8]T.E. Whitfield, E.J. Pickering, L.R. Owen, O.N. Senkov, D.B. Miracle, H.J. Stone, N.G. Jones, An assessment of the thermal stability of refractory high entropy superalloys, J. Alloy. Compd., 857 (2021), Article 157583.
[9]M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta Mater., 59 (2011), pp. 6308-6317.
[10]M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater., 60 (2012), pp. 5723-5734.
[11]R. Kozak, A. Sologubenko, W. Steurer, Single-phase high-entropy alloys an overview, Z. für Kristallographie - Crystalline Materials, 230 (2015), pp. 55-68.
[12]M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, E. Karapetova, Appl. Phys. lett., 100 (2012), p. 251907.
[13]B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng.: A, 375–377 (2004), p. 213-218.
[14]F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater., 61 (2013), pp. 2628-2638.
[15]E. Pickering, R. Munoz-Moreno, H. Stone, N. Jones, Precipitation in the equiatomic high-entropy alloy crmnfeconi, Scr Mater, 113 (2016), pp. 106-109.
[16]F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 61 (2013), pp. 5743-5755.
[17]B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater., 96 (2015), p. 258.
[18]F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 112 (2016), p. 40.
[19]Y.J. Li, A. Savan, A. Kostka, H.S. Stein, A. Ludwig, Accelerated atomic-scale exploration of phase evolution in compositionally complex materials, Mater. Horiz., 5 (2018), p. 86.
[20]L.M. Cheng, et al., The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metallurgical and Materials Transactions A: 2003. 34(11), Pages 2473-2481.
O.R. Myhr, Ø. Grong, and K.O. Pedersen, A Combined Precipitation, Yield Strength, and Work Hardening Model for Al-Mg-Si Alloys. Metallurgical and Materials Transactions A: 2010. 41(9), Pages 2276-2289.
[21]Yu Han, Huabing Li, Hao Feng, Yanzhong Tian, Mechanism of dislocation evolution during plastic deformation of nitrogen-doped CoCrFeMnNi high-entropy alloy, Materials Science and Engineering A: Volume 814, 13 May 2021, 141235.
[22]H. Zhi, C. Zhang, S. Antonov, H. Yu, T. Guo, Y. Su, Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel, Acta Mater., 195 (2020), pp. 371-382
[23]Ken Choa, Yumi Fujiokaa, Takeshi Nagaseb, Hiroyuki Y. Yasuda, Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase, Materials Science and Engineering A:735 (2018), pp. 191-200.
[24]L.M. Cheng, et al., The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metallurgical and Materials Transactions A: 2003. 34(11), Pages 2473-2481.
[25]O. R. Myhr, Ø. Grong, K. O. Pedersen, A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys, Metallurgical and Materials Transactions A volume 41, pp. 2276–2289 (2010).
[26]R. Becker, Analysis of texture evolution in channel die compression—I. Effects of grain interaction, Acta Metall Mater, 39 (1991), pp. 1211-1230.
[27]F.Roters, P.Eisenlohr, L.Hantcherli, D.D.Tjahjanto, T.R.Bieler, D.Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia: Volume 58, Issue 4, February 2010, Pages 1152-1211.
[28]H. Diao, D. Ma, R. Feng, T. Liu, C. Pu, C. Zhang, W. Guo, J.D. Poplawsky, Y. Gao, P.K. Liaw, Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility, Mater. Sci. Eng. A. (2019).
[29]J. Li, Q. Fang, P.K. Liaw, Microstructures and properties of high-entropy materials: modeling, simulation, and experiments. Adv. Engg. Mater. 23(1), 2001044 (2021).
[30]Mohammad Sajad Mehranpour, Hamed Shahmir, Peyman Asghari-Rad, Mohammadreza Hosseinzadeh, Novin Rasooli, Upgrading of superior strength–ductility trade-off of CoCrFeNiMn high-entropy alloy by microstructural engineering, Materialia Volume 22, May 2022, 101394.
[31]Asaro, R. J. (1983). Crystal plasticity.
[32]Mecking, H., & Kocks, U. F. (1981). Kinetics of flow and strain-hardening. Acta metallurgica, 29(11), 1865-1875.
[33]Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proceedings of the Royal Society of london. Series A, Containing Papers of a MathematicaL and Physical Character, 145(855), 362-387
[34]Rice J R, Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, Journal of the Mechanics and Physics of Solids : Volume 19, Issue 6, November 1971, Pages 433-455.
[35]N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, D.M. Ikornikov, V.N. Sanin, S.V. Zherebtsov, Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure, Mater. Sci. Eng. A., 728 (2018), pp. 54-62.
[36]H.Y. Yasuda, H. Miyamoto, K. Cho, T. Nagase, Formation of ultrafine-grained microstructure in Al0.3CoCrFeNi high entropy alloys with grain boundary precipitates, Mater. Lett., 199 (2017), pp. 120-123.
[37]J. W. Bae, J. Moon, M. J. Jang, D. Yim, D. Kim, S. lee, H. S. Kim, Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy, Mater. Sci. Eng. A: 703(2017), pp. 324-330.
[38]M.V. Klimova, D.G. Shaysultanov, S.V. Zherebtsov, N.D. Stepanov, Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy, Mater. Sci. Eng. A, 748 (2019), pp. 228-235.
[39]M.V. Klimova, D.G. Shaysultanov, R.S. Chernichenko, V.N. Sanin, N.D. Stepanov, S.V. Zherebtsov, A.N. Belyakov, Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy, Mater. Sci. Eng. A:740–741 (2019), pp. 201-210.
[40]Yanchong Xie, Hu Cheng, Qunhua Tang, Wei Chen, Weikun Chen, Pinqiang Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Intermetallics: Volume 93, February 2018, Pages 228-234.
[41]N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloy. Compd., 628 (2015), pp. 170-185.
[42]B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y. Zheng, R.S. Mishra, R. Banerjee, Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing, Acta Mater., 153 (2018), pp. 169-185.
[43]Jian-xin FU, Cheng-ming CAO, Wei TONG, liang-ming PENG, Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy, Transactions of Nonferrous Metals Society of China: Volume 28, Issue 5, May 2018, Pages 931-938.
[44]D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys, Acta Mater., 98 (2015), pp. 288-296.
[45]G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E. George, Phase stability and kinetics ofphase precipitation in crmnfeconi high-entropy alloys, Acta Mater, 161 (2018), pp. 338-351.
[46]Shuo Huang, Wei Li, Song Lu, Fuyang Tian, Jiang Shen, Erik Holmström, Levente Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy, Scripta Materialia: Volume 108, November 2015, Pages 44-47.
[47]G.Laplanche, A.Kostka, O.M.Horst, G.Eggeler, E.P.George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Materialia: Volume 118, 1 October 2016, Pages 152-163.
[48]D Xie, R Feng, PK Liaw, H Bei, Y Gao, Long-term tensile creep behavior of a family of FCC-structured multi-component equiatomic solid solution alloys, Scripta Materialia Volume 212, 15 April 2022, 114556.
[49]O.R.Myhr, Ø.Grong, H.G.Fjær, C.D.Marioarad, Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing, Acta Materialia: Volume 52, Issue 17, 4 October 2004, Pages 4997-5008.
[50]Yuming Qi , Heming Xu, Tengwu He, Miao Wang, Miaolin Feng, Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading, International Journal of Refractory Metals and Hard Materials:Volume 95, February 2021, 105415.
[51]E O Hall, The Deformation and ageing of mild steel: III Discussion of results, Proceedings of the Physical Society of london. Section B:Volume 64, 1951, Pages 747-753.
[52]S.Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T. M. Yue, K. C. Chan, Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping. Materials Science and Engineering A Volume 761, 22 July 2019, 138056.
[53]O.R.Myhr, Ø.Grong, Modelling of non-isothermal transformations in alloys containing a particle distribution, Acta Materialia: Volume 48, Issue 7, 19 April 2000, Pages 1605-1615.
[54]Isaac Toda-Caraballo, Pedro E.J. Rivera-Díaz-del-Castillo, Modelling solid solution hardening in high entropy alloys, Acta Materialia: Volume 85, 15 February 2015, Pages 14-23.
[55]Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip[J]. Journal of the Mechanics and Physics of Solids, 1966, 14(2): 95–102.
[56]Hill R. The essential structure of constitutive laws for metal composites and polycrystals[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(2): 79–95.
[57]Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413.
[58]Asaro R J, Rice J R. Strain localization in ductile single crystals[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309–338.
[59]Asaro R J. Micromechanics of crystals and polycrystals[J]. Advances in Applied Mechanics, 1983, 23(8): 1–115.
[60]Peirce D, Shih C F, Needleman A. A tangent modulus method for rate dependent solids[J]. Computers & Structures, 1984, 18(5): 875–887.
[61]Hamad F. Alharbi, Surya R. Kalidindi, Crystal plasticity finite element simulations using a database of discrete Fourier transforms, International Journal of Plasticity 66(2015),71-84.
[62]S.R. Kalidindi, C.A. Bronkhorst, L. Anand Crystallographic texture evolution in bulk deformation processing of FCC metals J. Mech. Phys. Solids, 40 (1992), pp. 537-569.
[63]Schmid, Erich, Walter Boas (1935). Kristallplastizität, Mit Besonderer Berücksichtigung der Metalle (in German) (1st ed.). Springer.
[64]S.B. Brown, K.H. Kim, L. Anand, An internal variable constitutive model for hot working of metals, Int. J. Plasticity, 5 (1989), pp. 95-130.
[65]黃冠樺. (2020). 利用晶體塑性有限元素法分析Ti65(AlCrNb)35中熵合金的強化機制與力學行為.
[66]E.I.Galindo-Nava, J.Sietsma, P.E.J.Rivera-Díaz-del-Castillo, Dislocation annihilation in plastic deformation: II. Kocks–Mecking Analysis, Acta Materialia : April 2012, Pages 2615-2624.
[67]M. Khadyko, O.R. Myhr, S. Dumoulin, and O.S. Hopperstad, A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys, Philosophical Magazine, 2016. 96(11): p. 1047-1072.
[68]Ling, X., Horstemeyer, M. F., & Potirniche, G. P. (2005), On the numerical implementation of 3D rate‐dependent single crystal plasticity formulations. International Journal for Numerical Methods in Engineering, 63(4), 548-568.
[69]Yongliang Shao, Lei Zhang, Xiaopeng Hao, Yongzhong Wu, Yuanbin Dai, Yuan Tian & Qin Huo, Large Area Stress Distribution in Crystalline Materials Calculated from lattice Deformation Identified by Electron Backscatter Diffraction, Scientific Reports volume 4, Article number: 5934 (2014).
[70]G.Laplanche, P.Gadaud, O.Horst, F.Otto, G.Eggeler, E.P.George, Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy, Journal of Alloys and Compounds
: Volume 623, 25 February 2015, Pages 348-353.
[71]A. Haglund, M. Koehler, D. Catoor, E. P. George, V. Keppens, Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures, Intermetallics:Volume 58, March 2015, Pages 62-64.
[72]Groh, S., Marin, E. B., Horstemeyer, M. F., & Zbib, H. M. (2009). Multiscale modeling of the plasticity in an aluminum single crystal. International Journal of Plasticity, 25(8), 1456-1473.
[73]M. Shabani, J. Indeck, K. Hazeli, P. D. Jablonski, G. J. Pataky, Effect of strain rate on the tensile behavior of cocrfeni and cocrfemnni high-entropy alloys. Journal of Materials Engineering and Performance:June 2019, 4348-4356.
[74]S. Lee, M. J. Duarte, M. Feuerbacher, R. Soler, C. Kirchlechner, C. H. Liebscher, G. Dehm, Dislocation plasticity in FeCoCrMnNi high-entropy alloy: quantitative insights from in situ transmission electron microscopy deformation. Materials Research Letters:Apr 2020, Pages 216-224.