| 研究生: |
高綾君 Kao, Ling-Chun |
|---|---|
| 論文名稱: |
以爐石在高溫下去除二氧化碳之研究 Sorption of Carbon Dioxide at High Temperatures by Slag |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 爐石 、碳酸化 、金屬廢棄物 、二氧化碳 、飛灰 |
| 外文關鍵詞: | fly ash, slag, carbonation, metal wastes, carbon dioxide |
| 相關次數: | 點閱:118 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業革命後,隨著人口快速增加、科技不斷突飛猛進,導致化石燃料的大量使用,使溫室氣體中的二氧化碳過量排放,而造成溫度升高、海平面上升等全球氣候異常變遷,因此如何降低煙道氣中二氧化碳的排放是當務之急。二氧化碳分離與回收技術中,以低溫濕式化學溶劑吸收法研究最多,但其用水量大,而使得熱效率降低,可降低發電及環保成本之高溫乾式淨化系統將是未來的趨勢。例如,在高溫下於氣化爐及燃燒爐後添加鈣系、鎂系之吸收劑,使之與二氧化碳於高溫下反應形成金屬碳酸鹽。然而,吸收劑成本亦是技術開發中之重要考量。
因此,本研究係以含鈣之金屬廢棄物(爐石及飛灰)做為高溫吸收劑來處理二氧化碳之研究,操作條件及研究成果分成下列幾點說明:
1.利用純的Ca(OH)2、CaO、Mg(OH)2及MgO進行碳酸化反應測試,由熱重分析結果顯示,Ca(OH)2有較好的利用率約91%。
2.由ICP和XRD分析結果顯示,爐石的Ca含量(34.4%)明顯高於飛灰(4.3%),且爐石中的Ca以Ca(OH)2形式存在,有利於碳酸化之反應。
3.由碳酸化實驗結果顯示,爐石對CO2有較好的處理效果,其處理效果和金屬廢棄物中鈣含量及其型式有顯著的關係。
4.再生實驗顯示,當溫度高於825°C時碳酸化後的爐石釋出二氧化碳較完全。
5.在不同的操作溫度對於爐石去除CO2之實驗可以發現,最佳的操作溫度應為500°C左右。
6.在其它操作參數對於爐石除二氧化碳效能之影響方面,發現水氣有助於碳酸化反應,當相對溼度於10%效果最好,之後隨著相對溼度的增加,利用率有下降趨勢,推測水氣濃度過高,會使系統不平衡而阻礙碳酸化反應發生;二氧化碳濃度增加會增加爐石利用率,但當濃度太高時,則無顯著之影響;而空間流速在1,200~6,000 mL/hr/g之間時吸收容量受空間流速影響不大。
7.由動力研究發現,爐石與二氧化碳之反應在400、600及700°C屬一階反應,溫度在500°C屬非一、二階反應。所求出的活化能Ea = 4.58 kJ/mol,碰撞因子A = 0.03 min-1。
After industrial revolution, the increases of CO2 concentration in the atmosphere are resulted from the consumption of huge amounts of fossil fuels, hecne causes global climate changes including temperature increasing and ocean level rising. Technologies on the mitigation of carbon dioxide emission have been developed, and CO2 removal from gas mixture by washing with solvent is one of the most widely practiced industrial gas-absorption processes. Wet scrubber requires large amount of water, resulting in decreasing the thermal efficiency of the system, hence the high temperature carbonation by dry techniques, such as adding sorbents of calcium and magnesium in the gasifier to react with carbon dioxide and form metal carbonate, is a trend for related fields.
Therefore, reducing the cost of sorbents is of important in this technique. Consequently, two types of metal waste (slag and fly ash) are used to absorb carbon dioxide and identified their utilization under various conditions. Results of this study are described as follows:
1.Regarding the carbonation by useing Ca(OH)2, CaO, Mg(OH)2 and MgO in TGA, the results show Ca(OH)2 has the best utilization of about 91%.
2.According to the results of ICP and XRD analysis, the Ca content of slag is high than that of fly ash. Furthermore, the Ca in slag existing as the Ca(OH)2 type, hence has a great potential on the carbonation.
3.The results show that slag is the better choice between these two metal wastes for the removal of CO2, and the utilizaton is a function of calcium content of the metal wastes.
4.The optimal operating temperature is about 500°C for the CO2 removal with slag.
5.The results with regarded to regeneration of sorbent show that the carbonated slag releases CO2 much more completely at over 825°C.
6.The effect of several parameters on the removal of CO2 by slag were studied. The results indicate that the relative humidity (RH) can enhance the carbonated reaction and the optimal condition is 10%. However, the utilization decreases as the RH increases over 10%, resulting from blocking of carbonation by extreme RH. Additionally, the utilization increases with the CO2 concentration when the concentration of CO2 is less than 60%. The space velocity between 2,000 and 6,000 mL/hr/g has no significant effect on slag utilization.
7.In the kinetic analysis, the reaction of slag and CO2 is the first order reaction. It can be found that the CO2 activation energy, Ea, is 4.58 kJ/mol and the frequency factor, A, is 0.03 min-1.
1.Ayala, J., Blanco, F., Garcia, P., Rodriguez, P., and Sancho, J., Asturian fly ash as a heavy metals removal material, Fuel, 1998, 77(11), 1147-1154.
2.Bayat, O., Characterisation of Turkish fly ashes, Fuel, 1998, 77(9-10), 1059-1066.
3.Beruto, D. T.and Botter, R., Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid-gas reaction and to form a non-protective solid product layer at 20 degrees C, Journal of the European Ceramic Society, 2000, 20(4), 497-503.
4.Butt, D. P., Lackner, K. S., Wendt, C. H., Conzone, S. D., Kung, H., Lu, Y. C., and Bremser, J. K., Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide, Journal of the American Ceramic Society, 1996, 79(7), 1892-1898.
5.Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S., and Barber, R. T., Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean, Nature, 1996, 379(6566), 621-624.
6.Foner, H. A., Robl, T. L., Hower, J. C., and Graham, U. M., Characterization of fly ash from Israel with reference to its possible utilization, Fuel, 1999, 78(2), 215-223.
7.Frias, M.and deRojas, M. I. S., Microstructural alterations in fly ash mortars: Study on phenomena affecting particle and pore size, Cement and Concrete Research, 1997, 27(4), 619-628.
8.Gupta H. and Fan L.S., Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas, Industrial & Engineering Chemistry Research, 2002, 41, 4035-4042.
9.Hoffman, J.S. and Pennline, H.W., Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents, DE-FC26-00NT, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2001.
10.Hayashi, H., Taniuchi, J., Furuyashiki, N., Sugiyama, S., Hirano, S., Shigemoto, N., and Nonaka, T., Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon, Industrial & Engineering Chemistry Research, 1998, 37(1), 185-191.
11.Hiemenz, P. C., Principles of Colloid and Surface Chemistry, M. Dekker, 1986.
12.Katz, A., Microscopic study of alkali-activated fly ash, Cement and Concrete Research, 1998, 28(2), 197-208.
13.Kaya, Y., The Role of CO2 Removal and Disposal, Energy Conversion and Management, 1995, 36(6-9), 375-380.
14.Lackner, K. S., Butt, D.P. and Wendt, C.H., Progress on binding CO2 in mineral substrates, Energy Conversion and Management, 1997b, 38, 259-264.
15.Mahuli, S. K.; Agnihotri, R.; Jadhav, R.; Chauk, S.; Fan, L. S., Combined calcination, sintering and sulfation model for CaCO3-SO2 reaction, Aiche Journal, 1999, 45(2), 367-382.
16.Mermam, A., “Adsorption” in ullmann's Encyclopedia of Industrial Chemistry, VCH publishers, New York, 1988, B3(9), 1-52.
17.Mostafa, N. Y., El-Hemaly, S. A. S., Al-Wakeel, E. I., El-Korashy, S. A., and Brown, P. W., Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag, Cement and Concrete Research, 2001, 31(6), 899-904.
18.Niemantsverdriet, J. W., Spectroscopy in Catalysis, Weinheim, 1993.
19.Nikulshina, V., Galvez, M. E., and Steinfeld, A., Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle, Chemical Engineering Journal, 2007, 129(1-3), 75-83.
20.Pradier, J. P. and Pradier, C. M., Carbon Dioxide Chemistry: Environmental Issues, The Royal Society of Chemistry, Cambridge, 1994.
21.Sahu B.K.., Improvement in California Bearing Ratio of Various Soils in Botswana by Fly Ash, International Ash Utilization Symposium , http://www.flyash.info/agenda.html, 2001.
22.Satterfield, C. N., Heterogeneous Catalysis in Industrial Practice 2E, McGraw-Hill, Inc, 1991.
23.Shih, S. M., Ho, C. S., Song, Y. S., and Lin, J. P., Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature, Industrial & Engineering Chemistry Research, 1999, 38(4), 1316-1322.
24.Skoog D. A., Holler F. J., Nieman T. A., Principles of Instaumental Analysis 5E, Saunders College Publishing, 1998.
25.Szekely J., Evans, J. W., and Sohn, H. Y. Gas-solid Reaction, Academic Press Inc, New York, 1976.
26.Xu, S., Otto, F. D., and Mather, A. E., Physical-Properties of Aqueous Amp Solutions, Journal of Chemical and Engineering Data, 1991, 36(1), 71-75.
27.Rostam-Abadi, M., Chen, S., and Lu, Y., Assessment of Carbon Capture Options for Power Plants, Proceeding of the 4th Annual Conference on Carbon Capture & Sequestration, Alexandria, Virginia, 2005.
28.Wu, S. F., Beum, T. H., Yang, J. I., and Kim, J. N., Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor, Industrial & Engineering Chemistry Research, 2007, 46(24), 7896-7899.
29.黃振家、吳欽木,「以浸染碳酸鹽活性碳固定床回收煙道氣中二氧化碳」,第十八屆空氣污染控制技術研討會,高雄,2001。
30.朱信、曾明宗,「煤炭氣化複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計劃期末報告,1991。
31.姜善鑫,「全球氣候變遷(上)」,環境教育季刊,第十六期,1993,第1~11頁。
32.蕭國源,「固體吸收劑二氧化碳吸收能力之評估」,國立台灣大學化學工程學系碩士論文,2000。
33.楊貫一,「爐石資源化-水淬高爐石應用於水泥及混凝土之規範」,技術與訓練,第15卷,第6期,第1~14頁,1990。
34.黃兆龍,「高爐熟料的性質及在混凝土工程上的應用」,營建世界,第55~59頁,1994。
35.江慶陞,「高爐爐石之性質」,技術與訓練,第6卷,第6期,第36~41頁,1981。
36.楊貫一,「爐石資源化-水淬高爐爐石之反應性與研磨」, 技術與黃兆龍,「混凝土性質與行為」,詹氏書局,1984。
38.郭炯煇,「中鋼爐渣工程性質之研討」, 國立高雄應用科技大學,木工程與防災科技研究所,碩士論文,2006。
39.林志棟,「氣冷爐石添加飛灰、底灰應用於基底層材料之研究」,國立中央大學土木工程研究所,期末報告,2001。
40.郭淑德,「飛灰資源化」,礦業技術,第4期,第299~315頁,1991。
41.賴正義,郭麗雯,「美國燃煤飛灰的利用和儲存之概觀」,臺電工程月刊,第511期,第1~15頁,1991.
42.吳萬金,「煤灰內有價金屬之回收」,臺灣礦業,第49卷,第3期,第107~121頁,1997。
43.郭淑德,「臺灣煤灰人工魚礁之研究經驗回顧」,臺電工程月刊,第547期, 第22~31頁,1994。
44.張玉金,「浮灰性質之研究」,台電工程月刊,第522 期,第18-27頁,1994。
45.吳萬金,「煤灰之性狀及利用」,台灣礦業,第3期,第1~16頁,1993。
46.台灣電力公司試驗所,「煤灰性質分析報告」,2000。
47.張玉金、郭淑德、劉昌明,「台中電廠飛灰品質介紹」,台電工程月刊,第535期,第1~9頁,1993。
48.林炳炎,「飛灰混凝土的性質及應用」,台電工程月刊,第492期,第82~100頁,1989。
49.林維明、黃兆龍、王和源、洪賢信,「飛灰混凝土應用規範之討論」,土木技術,混凝土技術專輯,第7期,第1卷,第119~132頁,1998。
50.郭淑德、許讚全、蔡美玲、謝清白,「煤灰利用或棄置處理可能對環境之衝擊調查研究」,台電工程月刊,第444期,第44~51頁,1985。
51.林平全,「飛灰混凝土」,科技圖書股份有限公司出版,1995。
52.王怡敦,「物組成對燃煤飛灰去除水中銅離子之影響」,台南藥理科技大學,環境工程衛生系,碩士論文,2003
53.黃兆龍,侯威銘,「飛灰材料對混凝土防水效益之評估」,建材新知,第158期,第67~75頁,1993。
54.楊鶴雄,林三賢,梁明德,劉昌民,郭麗雯,「飛灰與皂土混合物之大地工程性質研究」,臺電工程月刊,第589期,第66~74頁,1997。
55.洪阿田,羅瑞生,鄭榮賢,郭淑德,陳志聖,許讚全,「飛灰對強酸性土壤和豆科作物之效果研究」,臺電工程月刊,第533期,第24~35頁,1993。
56.黃兆龍,林仁益,郭淑德,劉昌民,「含5%飛灰之水泥漿體性質研究」,臺電工程月刊,第525期,第61~77頁,1992。
57.黃兆龍,郭淑德,劉昌民,「含飛灰及強塑劑對水泥水化機理與性質之研究」,臺電工程月刊,第528期,第44~64頁,1992。
58.吳萬金,「煤灰內有價金屬之回收」,臺灣礦業,第49期,第3卷No.,第107~121頁,1997。
59.陳富英,洪阿田,鄭榮賢,陳志聖,郭淑德,「飛灰與豬糞混合使用於蓮霧果園之效果研究」,臺電工程月刊,第534期,第47~58頁,1993。
60.李中達,「氫氧化鈣與二氧化碳反應之動力學」,國立台灣大學,化學工程研究所,碩士論文,1996。
61.陳航,陳郁文,「二氧化碳之捕集及再利用技術之應用介紹」,工業污染防治,第94期,第117~133頁,2005。
62.陳陵援、吳慧眼著,「儀器分析」,三民書局,八月,2000。
63.黃慧琦,「利用蛇紋石於氣相系統中進行二氧化碳固定化之研究」,國立成功大學,化學工程研究所,碩士論文,2006。
64.吳嶸,「包矽改性奈米碳酸鈣應用於高溫二氧化碳吸附劑的製備及評價」,浙江大學,碩士論文,2006。
65.蘇乾元 ,「鈣矽石轉換成碳酸鹽的改良程序」,國立臺灣大學,化學工程學研究所,碩士論文,2006。