簡易檢索 / 詳目顯示

研究生: 鄭朝勇
Jheng, Chao-Yong
論文名稱: 力學模擬系統建構於積層製造人工下顎之應用
Construction of Mechanical Property Simulation for Artificial Mandible Made by Additive Manufacturing
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 積層製造有限元素分析Ti-6Al-4V彈性模數孔洞結構生醫植入材應力遮蔽效應人工下顎
外文關鍵詞: additive manufacturing, porous structures, finite element analysis, Ti-6Al-4V, biomedical implant, stress shadowing effect, Young’s modulus
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩大主軸,分別為”模擬技術的建構”以及”應力模擬應用於積層製造”。
    模擬技術的建構包含不同圓孔的鋁合金試片品的拉伸試驗、不同孔洞單元堆疊成的圓柱模型與各式人工下顎模擬模組等,利用有限元素分析軟體進行各項模擬參數與邊界條件的搭配,例如材料區塊界線,施力的固定約束、邊界附載與接觸試驗的接觸對偶、來源及目的邊界,移動端的輔助掃描、Range Function等等,最終找出不同模型各自最有效率的模擬條件。
    應力模擬應用於積層製造則又分為:1. 針對不同孔洞結構與堆疊方式(#1、#2)的模型進行的壓縮模擬,探討孔洞結構、彈性模數與相對密度間的關係。2. 對於生醫用植入材應用於人體下顎進行的咬合受力模擬,討論植入材或手術導板在人體下顎不同位置時所需要面對的問題。.
    實驗結果首先先藉由含圓孔之鋁合金試片的拉伸試驗來與模擬結果比較以驗證模擬技術的可信度,其兩者數據間的差異成線性關係,最低的1孔試片誤差約4 %。
    將6種不同孔隙率的孔洞單元,以”口字堆疊”,”ㄇ字堆疊”兩種方法建立成不同的圓柱型模型。堆疊後的圓柱模型應力集中從原本單一孔洞集中在支柱周遭轉移到了支柱中間,改變了了力傳遞的路徑。而兩種結構中,明顯以”口字堆疊”的方式較為穩定,在趨勢上的表現也較為一致;”ㄇ字堆疊”的方式則是因為重複單元較多而接結構較為鬆散,在相同應力下能擁有較大的變形量,即較低的彈性模數。
    兩者的堆疊方式皆會比實際實驗的彈性模數較高,因此額外建立一含有小孔洞的圓柱模型,其而外添加了1.42 %孔隙率使彈性模數下降了約8.1 %的幅度。同時,以相同孔隙率孔洞單元堆疊起來的兩種模型,在模擬結果中皆不會有高於材料降伏強度的應力集中值出現,因此推測在EBM試片中會有包含足以影響其機械性質的孔隙存在。
    在實際應用端,藉由模擬技術來模擬人工下顎在不同區帶的表現,依序建立了普通下顎模型、齒模(toothless)模型、手術導板(Surgical Guide)模型與含有取代塊之下顎模型來依照不同需求進行模擬。主要觀察各模型在不同條件下的應力分布或應力集中的位置、探討應力遮蔽效應對植入材及周遭骨骼帶來的影響。能藉由這些模擬來預防植入材在使用的變形,同時提供做為臨床上參考的依據。
    本研究透過模擬技術來分析一般難以實際進行的實驗,在工程上提升效率與節省成本,藉由應力分結果預測材料可能產生破壞或變形的位置等為優勢,期望日後能探討出孔隙率與彈性模數間的關係,並以此為依據將不同孔洞結構匯入於生醫植入材中來改善植入材的彈性模數,在降減緩應力遮蔽效應與維持機械強度間取得最佳的平衡。

    關鍵字: 積層製造、有限元素分析、Ti-6Al-4V、彈性模數、孔洞結構、生醫植入材、應力遮蔽效應、人工下顎

    This paper was divided into two major parst: "construction of simulation technology" and "stress simulation applied to additive manufacturing".
    The first part includes the tensile test of aluminum specimens with different round holes, the cylindrical model formed by stacking different units, and various artificial mandible simulation models.
    The second part is further divided into: 1. Compression simulation of different pore structures and stacking patterns (#1, #2), and then the discussion of the Gibson & Ashby relationship. 2. The simulation of the occlusal force applied to mandible, and the problems that the implant or the surgical guide should face in different positions are discussed.
    The reliability of simulation results is verified by the tensile test of the aluminum specimens with round holes. The tendency between the two data is linear, and the lowest deviation in one-pore samples is about 4%. Six kinds of different porosity were built into different cylindrical models by two methods:“ㄇ-stacking (#1)”and“口-stacking (#2). The way of #2 is obviously stable and predictable; the way of #1 has larger amount of deformation and lower modulus because of the more repeating unit.
    EBM samples is supposed to have plenty of unexpected self-contained porosity. When additional 1.42 % porosity was be added, 8.1 % Young's modulus value will be lower in #2 cylindrical models.
    On the practical side, simulation techniques are used to simulate the performance of artificial mandible in different regions. Simple-mandible model is the most suitable model and meanwhile achieved the best balance between simulation feasibility and actual demands.
    It is expected that the position may be destroyed or deformed by the stress distribution simulation result, and the relationship between the porosity and the elastic modulus in the future. At the same time, it reaches the best balance between reducing the stress shielding effect and maintaining the mechanical strength.

    Keywords: additive manufacturing, porous structures, finite element analysis, Ti-6Al-4V, biomedical implant, stress shadowing effect, Young’s modulus.

    目錄 摘要 I 圖目錄 XII 表目錄 XX 第一章 緒論 1 1-1 前言 1 1-2 金屬積層製造之應用 2 1-3 研究動機與目的 3 第二章 理論基礎與文獻回顧 5 2-1 生醫植入材簡介 5 2-1-1 生醫材料之生物相容性 6 2-2 孔洞結構對與材料性質 8 2-2-1 孔洞結構於生物相容性之影響 8 2-2-2 孔洞結構對彈性模數之影響 11 2-3 彈性模數與生醫植入材 16 2-3-1 應力遮蔽效應 16 2-3-2 Gibson & Ashby 提出之楊氏係數與相對密度之關係 18 2-3-3 彈性限與von-Mises應力 19 2-4 下顎骨簡介與重建手術 22 2-4-1 下顎骨格系統 22 2-4-1 下顎骨肌肉系統 24 第三章 實驗方法與步驟 29 3-1 實驗所需材料與樣品規格 29 3-2 使用儀器 31 3-2-1 微拉伸試驗機 31 3-2-1 萬能拉伸試驗機 31 3-2-2 光學顯微鏡 32 3-2-3 電子束積層融熔3D列印機 33 3-2-4 X光繞射儀 34 3-2-5 HV微硬度測試儀 35 3-3 常用軟體 39 3-3-1 COMSOL Multiphysics 39 3-3-2 SOLIDWORKS 40 3-4 實驗流程 42 3-4-1 建立之模型 42 3-4-2 不同孔洞單元之應力分析模擬 43 3-4-3 單元匯入孔洞結構 44 3-4-4 生醫用植入材於人工下顎受力分布之模擬 45 第四章 實驗結果與討論 57 4-1 模擬技術驗證 57 4-1-1 CNC加工鋁合金試片之拉伸試驗與模擬結果 57 4-2 不同孔洞結構壓縮試驗模擬驗證 61 4-2-1 不同結構之單元孔洞應力模擬分析 61 4-2-2 匯入孔洞結構之試樣應力模擬結果 62 4-2-3 模型自帶孔隙率分析 64 4-3 與Gibson & Ashby 提出之楊氏係數與相對密度之關係式比較 74 4-3-1 模擬結果與實際實驗結果之比較 74 4-3-2 Fitting curve與C、N值關係討論 75 4-4 生醫用植入材於人工下顎受力分布之研究 80 4-4-1 人工下顎模型之受力模擬 81 4-4-2 取代塊於人工下顎之受力模擬 84 4-4-3 骨釘於生醫用鈦板不同孔洞位置時之受力模擬(3 Ver.) 86 第五章 結論 98 參考文獻 100

    [1] Zhao X, Niinomi M, Nakai M, Ishimoto T, Nakano T. Development of high Zr-containing Ti-based alloys with low Young's modulus for use in removable implants. Materials Science and Engineering C 31:1436-1444, 2011.
    [2] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Progress in Materials Science 54:397-425, 2009.
    [3] A. O’CONNOR, "The Claim: After Being Broken, Bones Can Become Even Stronger," New York Times. Retrieved, 10-19, 2010.
    [4] J. Biemond, G. Hannink, N. Verdonschot, and P. Buma, "Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating," Journal of Materials Science: Materials in Medicine, 24(3):745-753, 2013.
    [5] MatWeb, "Mechanical properties of Titanium Ti-6Al-4V (Grade 5)," 2017.
    [6] J. Y. Rho, R. B. Ashman, and C. H. Turner, Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, Journal of biomechanics, 26(2):111-119, 1993.
    [7] B. Chang et al., "Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth," Acta biomaterialia, 33:311-321, 2016.
    [8] Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering A 243:244-249, 1998.
    [9] S. Van Bael et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta biomaterialia, 8(7):2824-2834, 2012.
    [10] J. Wieding, A. Wolf, and R. Bader, "Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone," Journal of the mechanical behavior of biomedical materials, 37:56-68, 2014.
    [11] M. F. Ashby and R. M. Medalist, The mechanical properties of cellular solids, Metallurgical Transactions A, 14(9):1755-1769, 1983.
    [12] C. Yan, L. Hao, A. Hussein, and P. Young, Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, journal of the mechanical behavior of biomedical materials, 51:61-73, 2015.
    [13] Yangli Xu et al., Study on Topology Optimization Design, Manufacturability, and Performance Evaluation of Ti-6Al-4V Porous Structures Fabricated by Selective Laser Melting (SLM), Materials, 10(9), 1048, 2017
    [14] R. v. Mises, "Mechanik der festen Körper im plastisch-deformablen Zustand," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913(4):582-592, 1913.
    [15] Wiki, "Cauchy stress tensor," 2018.
    [16] Frank H. Netter MD, Atlas of Human Anatomy, 7e Paperback, Elsevier; 7 edition, 28 Feb. 2018.
    [17] Schuenke Michael M.D. Ph.D., Schulte, Erik M.D., Schumacher Udo M.D., Cass Wayne A. Ph.D. (EDT), Voll Markus (ILT), Thieme Atlas of Anatomy: Internal Organs, Thieme Medical Pub, 18 May 2016
    [18] J. Lee, Y. Kim, H. Jang, and W. Chung, "Cr2O3 sealing of anodized aluminum alloy by heat treatment," Surface and Coatings Technology, 243:4-38, 2014.
    [19] 成功大學, "微奈米中心奈微拉伸試驗機介紹," 2018.
    [20] 成功大學, "微奈米中心X光繞射儀介紹," 2018
    [21] Wiebke Schupp, Michael Arzdorf, Berend Linke, and Ralf Gutwald, Biomechanical Testing of Different Osteosynthesis Systems for Segmental Resection of the Mandible, J Oral Maxillofac Surg 65:924-930, 2007.
    [22] G. B. G. Klein et al., Biomechanical evaluation of different osteosynthesis methods after mandibular sagittal split osteotomy in major advancements , Int. J. Oral Maxillofac. Surg 46:1387–1393, 2017.
    [23] B. O¨ zden, A. Alkan, S. Arici, E. Erdem: In vitro comparison of biomechanical characteristics of sagittal split osteotomy fixation techniques. Int. J. Oral Maxillofac. Surg 35:837–841, 2006.
    [24] J. Lee, Y. Kim, H. Jang, and W. Chung, Cr2O3 sealing of anodized aluminum alloy by heat treatment, Surface and Coatings Technology, 243:34-38, 2014.
    [25] James Lathrop, The mandible of man, designed by 3D Scanner, June 10th 2017
    [26] AH Choi, B Ben-Nissan, RC Conway, Three-dimensional modelling and finit element analysis of the human mandible during clenching, Australian Dental Journal 2005;50:(1):42-48

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE