| 研究生: |
蔡元泰 Tsai, Yuan-Tai |
|---|---|
| 論文名稱: |
氣候變遷下之臺灣囓齒目動物海拔變化及分布預測 Elevation changes and species distribution model of Rodentia under climate change in Taiwan |
| 指導教授: |
陳一菁
Chen, I-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 最大熵模擬 、生物特性 、鹿野忠雄 、群聚結構 |
| 外文關鍵詞: | climate warming, biological trait, community structure, MaxEnt |
| 相關次數: | 點閱:79 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候暖化透過多種方式影響全球的生態系統、群聚結構及生物個體。在氣候暖化的情況下,生物被預期往高海拔或兩極移動。臺灣為島嶼地形,土地面積有限,沿海拔移動可能為生物適應氣候變遷的主要方式。本研究探討(一)臺灣過去五十年之氣候改變。(二)臺灣囓齒目動物分布是否如氣候暖化之預期往高海拔移動?(三)臺灣囓齒目動物海拔分布變化與生物特性之關係;(四)在溫室氣體排放減緩的RCP 2.6,以及溫室氣體排放更加嚴重的RCP 8.5情境下,利用MaxEnt預測臺灣囓齒目動物的海拔分布及物種豐富度之變化。本研究比較Kano (1940)以及特生中心(1992-2009)之生物普查資料發現,僅5種(56%, 共9種可供比較)囓齒目動物海拔分布上限上升、 7種(64%,共11種可供比較)海拔分布下限上升,未充分反映氣候暖化之預期,尤其海拔下限上升無法排除棲地改變之影響。但整體而言,物種豐富度之峰值仍有往高海拔移動之趨勢。本研究分析吻肛長、Kano (1940)物種海拔分布重心、棲地及活動時間等生物特性,僅物種活動時間與其海拔上限變化有關,晝行性物種上限上升幅度大於夜行性物種。藉由MaxEnt進行物種分布預測發現,現今至2070年,在RCP 2.6情境下,8種(67%)物種平均海拔上升,而RCP 8.5情境下,9種(75%)物種平均海拔上升,2種情境皆顯示中海拔地區之物種豐富度下降。在空間尺度方面,發現RCP 2.6情境下,臺灣中央山脈西側地區物種豐富度將減少,而在RCP 8.5情境下,臺灣中央山脈北部及西南側的地區物種豐富度減少,東南部將會略微增加。
Species have been observed to move upward and polewards due to climate warming. However, such evidence is scarce for endotherm or from tropical areas. We investigated whether Taiwan’s Rodentia have moved to higher elevation as expected from climate warming. Mountain temperature in Taiwan has increased for 0.30°C for the past 50 years (1960-2009). For the study period (1925-1933 to 1992-2009), 5 species (56%, out of 9 species in consideration) shifted their upper elevational boundary upward; 7 species (64%, out of 11 species in consideration) contracted their lower boundary upward. The peak of species richness shifted to higher elevation. Biological traits, e.x. snout vent length, activity time, diet types, and habitat types, showed little correlation with species boundary changes, except that diurnal species shifted their upper boundaries more than nocturnal species. We applied MaxEnt to model species distribution changes under RCP 2.6 and RCP 8.5 scenarios. Most species (67% and 75% in RCP 2.6 and RCP 8.5 respectively) will move to higher ground in 2070; however, species richness will decline in the west part of Central Mountain Range under RCP 2.6 scenario and decline in the north part of Central Mountain Range under RCP 8.5 scenario from current to 2070.
吳尹仁。2007。台灣黑熊之棲息地利用及分布預測模式。國立屏東科技大學野生動物保育研究所碩士論文。
林良恭。1970。台灣哺乳類研究。東海大學生物學研究所碩士論文。
林良恭。2008。雪霸國家公園-日據時代雪山地區生物資源研究文獻彙編與經典論文之翻譯成果報告。雪霸國家公園管理處。
林良恭。2009。雪霸國家公園哺乳類動物相調查—武陵地區成果報告。雪霸國家公園管理處。
林春富、楊吉宗、方懷聖、張簡琳玟、蔡昕皓、陳元龍及林瑞興。2002。台灣北部地區野生動物多樣性之調查研究(2/4)II.桃園縣野生動物多樣性之調查研究。特有生物研究保育中心。南投。
邱清安、陳子英、王志強、邱祈榮、賴彥任及蔡智勇。2013。應用BIOMOD2模擬臺灣水青岡之分布。林業研究季刊 35:253-272。
郝偉廉與徐偉。1998。台灣哺乳動物:野外探險食用大圖鑑。大樹文化。臺北。
國立臺灣大學全球氣候變遷中心。2014。http://www.gcrc.ntu.edu.tw
張鈺敏。2009。最大熵物種分布模式應用於台灣十種樹種之可轉移性研究。國立東華大學自然資源管理研究所碩士論文。
張學文、褚心如及黃重明。1998。台南縣的哺乳動物。台南縣政府。台南。
張簡琳玟、許富雄、陳元龍、林春富、蔡昕皓、邱玉娟及方懷聖。2001。屏東縣的野生動物。特有生物研究保育中心。南投。
張簡琳玟、鄭錫奇、姚正得、謝仲甫、陳元龍、楊燿隆、張仕緯、林春富、李德旺、蔡奇立、方懷聖及許皓捷。2010。行政院農業委員會特有生物研究保育中心99年度科技計畫研究報告。特有生物研究保育中心。南投。
張簡琳玟、鄭錫奇、張仕緯、張育誠、周政翰、劉嘉顯、黃光隆、許善理及張鈞翔。2013。臺灣齧齒目動物檢索表。特有生物研究保育中心。
楊吉宗、方懷聖、張簡琳玟、李德旺、陳元龍、姚正得、林春富、賴肅如及林德恩。2003。台灣北部地區野生動物多樣性之調查研究(3/4)III.台北縣市與基隆市野生動物多樣性之調查研究。特有生物研究保育中心。南投。
楊吉宗、洪典戊、朱賢斌及林春富。1999.八十八年度試驗研究計畫執行成果(動物組)。特有生物研究保育中心。南投。
楊吉宗、張簡琳玟、許富雄、洪典戊、朱賢斌、林春富、蔡昕皓及方懷聖。2001。八十八年下半年及八十九年度試驗研究計畫執行成果(動物組)。特有生物研究保育中心。南投。
楊吉宗、張簡琳玟、許富雄、蔡昕皓、陳元龍、林春富及楊耀隆。2002.臺灣北部地區野生動物多樣性之調查研究(1/4)。九十年度試驗研究計畫成果<I> 16-113。特有生物研究保育中心。南投。
楊吉宗、許富雄、張簡琳玟、陳元龍、姚正得、洪典戊、朱賢斌、林春富、蔡昕皓及賴蕭如。1998。八十七年度試驗研究計畫執行成果(動物組)。特有生物研究保育中心。南投。
廖光正、許富雄、張簡琳玟、陳元龍、陳立禎、姚正得、洪典戊、朱賢斌、蔡昕皓、林春富及楊耀隆。1998。八十六年度試驗研究計畫執行成果(動物組)。特有生物研究保育中心。南投。
蔡幸蒨。2001。臺灣黑熊(Ursus thibetanus formosanus)族群相對豐富度及分布預測模式。國立屏東科技大學野生動物保育研究所碩士論文。
鄭錫奇、陳元龍、方懷聖、張簡琳玟、李德旺、林瑞興、林春富及方引平。2004。台灣北部地區野生動物多樣性之調查研究-宜蘭縣的野生動物及花東地區的翼手目。特有生物研究保育中心。南投。
鄭錫奇、陳立楨、林華慶、林麗紅、蔡晰皓及楊耀隆。1997。八十五年度試驗研究計畫執行成果(動物組)。特有生物研究保育中心。南投。
鄭錫奇。2005。農委會特有生物研究保育中心九十四年度科技計畫研究報告。特有生物研究保育中心。南投。
鄭錫奇。2006。行政院農業委員會特有生物研究保育中心九十五年度科技計畫研究報告。特有生物研究保育中心。南投。
鄭錫奇。2008。行政院農業委員會特有生物研究保育中心九十七年度科技計畫研究報告。特有生物研究保育中心。南投。
簡明龍、林春基、鄭錫奇、張簡琳玟、林雲龍及張仕緯。1994。八十三年度試驗研究計畫執行成果。特有生物研究保育中心。南投。
簡明龍、林春基、鄭錫奇、張簡琳玟及張仕緯。1995。八十四年度試驗研究計畫執行成果(動物組)。特有生物研究保育中心。南投。
簡明龍、鄭錫奇、張簡琳玟及林雲龍。1993。八十二年度試驗研究計畫執行成果(動物組)。特有生物研究保育中心。南投。
蘇鴻傑。1992。台灣之植群:山地植群帶與地理氣候區。中央研究院植物研究所專刊11:39-53。 中央研究院植物研究所。
Abolafya, M., O. Onmuş, Ç. H. Şekercioğlu, and R. Bilgin. 2013. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios. Plos One 8: e68037.
Anderson, B. J., H.R Akçakaya, M.B. Araújo, D.A. Fordham, E. Martinez-Meyer, W. Thuiller, and B.W. Brook. 2009. Dynamics of range margins for metapopulations under climate change. Philosophical Transactions of the Royal Society B 276: 1415–1420.
Bateman, B. L.,H. T. Murphy, A. E. Reside, K. Mokany, and J. VanDerWal. 2013. Appropriateness of full-, partial- and no-dispersal scenarios in climate change impact modelling. Diversity and Distributions 19: 1224-1234.
Berg, M. P., E. T. Kiers, G. Driessen, M. V. D. Heijden, B. W. Kooi, F. Kuenen, M. Liefting, H. A. Verhoef, and J. Ellers. 2010. Adapt or disperse: understanding species persistence in a changing world. Global Change Biology 16: 587-598.
Burns, C. E., K. M. Johnston, and O. J. Schmitz. 2003. Global climate change and mammalian species diversity in US national parks. PNAS 100: 11474–11477.
Cahill, A.E., M. E. Aiello-Lammens, M. C. Fisher-Reid, X. Hua, C. J. Karanewsky, H. Y. Ryu, G. C. Sbeglia, F. Spagnolo, J. B. Waldron, O. Warsi, and J. J. Wiens. 2012. How does climate change cause extinction? Proceedings of the Royal Society B 280: 20121890.
Charmantier, A., R. H. McCleery, L. R. Cole1, C. Perrins, L. E. B. Kruuk, B. C. Sheldon. 2008. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320: 800-803.
Chefaoui, R. M. and J. M. Lobo. 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological modeling 210: 478-486.
Chen, I-C., J. K. Hill1, R. Ohlemüller, D. B. Roy, C. D. Thomas. 2011. Rapid range shifts of species associated with high Levels of climate warming. Science 333: 1024-1026.
Cooper, N., R. P. Freckleton, and W. Jetz. 2011. Phylogenetic conservatism of environmental niches in mammals. Philosophical Transactions of the Royal Society B 278: 2384-2391.
Dossena, M., G. Yvon-Durocher, J. Grey, J. M. Montoya, D M. Perkins1, M. Trimmer, and G. Woodward. 2012. Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B 279: 3011-3019.
Elith, J. and J. R. Leathwick. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677-697.
Ferriere, R., J. R. Belthoff, I. Olivieri, and S. Krackow. 2000. Evolving dispersal: where to go next?. Trends in Ecology & Evolution 15: 5-7.
Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 1: 38-49.
Gaines, M. S. and L. R. McClenaghan, Jr. 1980. Dispersal in small mammals. Annual Review of Ecology, Evolution, and Systematics 11: 163-196.
Gogol-Prokurat, M. 2011. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecological Applications 1: 33-47.
Graham, R. W. and E. C. Grimm. 1990. Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecology & Evolution 5: 289-292.
Grinnell, J. 1917. Field test of theoties of concerning distribuiontoinal control. The American Naturkist 602: 115-128.
Grinnell, J. and T. I. Storer. 1924. Animal life in the Yosemite. University of California Press, Berkeley.
Guralnick, R. 2007. Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. Global Ecology and Biogeography 16: 14-23.
Halbritter, A. H., J. M. Alexander, P. J. Edwards, and R. Billeter. 2013. How comparable are species distributions along elevational and latitudinal climate gradients? Global Ecology and Biogeography 22: 1228-1237.
Hernandez, P. A., C. H. Graham, L. L. Master and D. L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecology 29: 773-785.
Hijmans, R. J. 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 3: 679-688.
Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jomes, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Internation Journal of Climatology 25: 1965-1978.
IPCC. 2014. http://www.ipcc.ch/
Jump, A. S., T.-J. Huang, and C.-H. Chou. 2012. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35: 204-210.
Kano, T. 1940. Zoogeographical studies of the Tsugitaka Mountains of Formosa. Shibusawa Institute, Tokyo, Japan.
Karanth, K. U., A. M. Gopalaswamy, N. S. Kumar, S.Vaidyanathan, J. D. Nichols, and D. I. MacKenzie. 2011. Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. Journal of Applied Ecology 48: 1048-1056.
Kerr, J., and L. Packer. 1998. The impact of climate change on mammal diversity in Canada. Environmental Monitoring and Assessment 49: 263-270.
Levinsky, I., F. Skov, J.-C. Svenning, and C. Rahbek. 2007. Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodiversity and Conservation 16:3803–3816.
Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393.
Lurgi, M., B. C. López, and J. M. Montoya. 2012. Climate change impacts on body size and food web structure on mountain ecosystems. Philosophical Transactions of the Royal Society B 367: 3050-3057.
Lurgi, M., B. C. López, and J. M. Montoya. 2012.Novel communities from climate change. Philosophical Transactions of the Royal Society B 367: 2913-2922.
Lyons, S. K., P. J. Wagner, and K. Dzikiewicz. 2010. Ecological correlates of range shifts of Late Pleistocene mammals. Philosophical Transactions of the Royal Society B 365: 3681–3693.
McCain, C. M. and S. R. King. 2014. Body size and activity times mediate mammalian responses to climate change. Global Change Biology.
Moritz, C., J. L. P., Chris J. C., J. L. Parra, G. C. White, S. R. Beissinger. 2008. Impact of a century of climate change on Ssmall-Mammal communities in Yosemite National Park, USA. Science 322: 261-264.
Myers, P., B. L. Lundrigan, S. M. G. Hoffman, A. P. Haraminac, and S. H. Seto. 2009. Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Global Change Biology 15: 1434-1454.
Pachauri, R. K., IPCC Chairman, A. Resinger, Head of Technical Support Unit, The Core Writing Team. 2007. Climate Change 2007: the AR4 Synthesis Report. Geneva, Switzerland.
Rowe, R. J., J. A. Finarelli, and E. A. Rickart. 2010. Range dynamics of small mammals along an elevational gradient over an 80-year interval. Global Change Biology 16: 2930-2643.
Rubidge, E. M., W. B. Monahan, J. L. Parra, S. E. Cameron, and J. S. Brashares. 2011. The role of climate, habitat, and species co‐occurrence as drivers of change in small mammal distributions over the past century. Global Change Biology 17: 696-708.
Sheldon, K. S., S. Yang, and J. J. Tewksbury. 2011. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecology Letter 14: 1191-1200.
Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. 2013. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
TaiBIF. 2014. http://taibif.tw/
TCCIP. 2013. http://tccip.ncdr.nat.gov.tw/
Thuiller, W., and D. Georges, and R. Engler. 2013. Biomod2: Ensemble platform for species distribution modeling. R package version 3.1-25 http://CRAN.R-project.org/package=biomod2.
Tingley, M. W. and S. R. Beissinger. 2009. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology & Evolution 11: 625-33.
VanDerWal, J., L. P. Shoo, C. Graham, and S. E. Williams. 2009. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecological Modelling 220: 589-594.
Vuuren, D. P. V., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. J. Smith, S. K. Rose. 2011. The representative concentration pathways: an overview. Climate Change 109: 5-31.
Walther, G.-R. 2010. Community and ecosystem responses to recent climate change. Proceedings of the Royal Society B 365: 2019-2024.
Watson, J. E. M., T. Iwamura, and N. Butt. 2013. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change 3: 989-994.
Whitmee, S and C. D. L. Orme. 2013. Predicting dispersal distance in mammals: a trait-based approach. Journal of Animal Ecology 82: 211-221.
WorldClim. 2014. http://www.worldclim.org/
Xu, T. and M. Hutchinson. 2011. Anuclim version 6.1 user guide. The Australian National University, Fenner School of Environment and Society, Canberra.
Yang, D.-S., C. J. Conroy, and C. Moritz. 2011. Contrasting responses of Peromyscus mice of Yosemite National Park to recent climate change. Global Change Biology 17: 25592566.
Yang, X.-Q., S.P.S. Kushwaha, S. Saranb, J. Xuc, P.S. Royb. 2013. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering 51: 83-87.
Yu, H.-T. 1994. Distribution and abundance of small mammals along a subtropical elevational gradient in central Taiwan. The Zoological Society of London 234: 577-600.