| 研究生: |
劉志宏 Liu, Chih-Hong |
|---|---|
| 論文名稱: |
以共濺鍍法沉積氧化鋅-矽薄膜之研究 Investigation of ZnO-Silicon Thin Films Deposited by Co-Sputter System |
| 指導教授: |
李清庭
Lee, Ching-Ting 許進恭 Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 矽 、氧化鋅 |
| 外文關鍵詞: | Si, ZnO |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於矽材料製程技術的成熟及其低廉的價格,因此科學家也逐漸著手於矽量子點發光原理之研究。雖然矽量子點是目前發光效率最高的矽基材料,且矽光源對於未來的科學或技術仍扮演著舉足輕重的角色,但由於難做成元件,直到現在仍未有實際之應用。因此目前已經有多種沉積矽量子點薄膜在不同基材的技術,而最常見的基材可分為兩類,分別為二氧化矽(SiO2)、以及氮化矽(SiNX),然而這兩種基材均具有一共同缺點,即是導電性不佳,因此難以應用於元件製作上。因此,本實驗室採用射頻共濺鍍系統,將導電性不佳的二氧化矽(SiO2)、和氮化矽(SiNX)基材以導電性佳之氧化鋅取代,利用共濺鍍的方式將矽與氧化鋅於常溫下一起濺鍍沉積於基板上,之後再進行不同條件的熱退火處理製程。
本實驗室共濺鍍系統之實驗參數為控制通入氬氣氣體之流量、腔體之腔壓,同時改變矽靶材以及氧化鋅靶材之濺鍍功率,以濺鍍出具有不同顆粒大小之矽量子點薄膜。此外,為了研究氧化鋅薄膜中矽的含量,我們先個別沉積單一靶材並計算出其濺鍍速率,再利用公式計算出矽含量的理論值。同時以能量散佈光譜儀 (Energy dispersive x-ray spectrum) 分析出實際矽於薄膜內之含量。除此之外,為了探究薄膜中的矽結晶性及化學鍵結,我們量測了x光繞射儀 (X-ray Diffraction spectrum) ,拉曼光譜 (Raman spectroscopy) 及傅立葉轉換紅外線光譜 (Fourier transformation infrared spectrometry),此外為了了解沈積薄膜的電特性,我們亦使用霍爾量測 (Hall measurment)系統量測薄膜的電阻率(Resistivity)、遷移率(Mobility)以及載子濃度(Carrier concentration)。並將各種不同條件成長之薄膜量測光激發頻譜(Photoluminescence spectrometry)、和變溫光激發頻譜(Temperature Depended Photoluminescence ),藉由在室溫以及不同溫度下來探討矽量子點的發光機制。本實驗室最後採用穿透式電子顯微鏡 (Transmission Electron Microscopy) 量測矽量子點的顆粒大小,並藉由繞射點圖譜來判斷矽之結晶型態。
In recent years, scientist gradually begins to research the principle of visible light emission of silicon quantum dot, due to its manufacture technology is maturity and the cost is cheap. Although the silicon quantum dot has the highest efficiency among the Si-base luminescence materials, it is difficult to apply on the integrated circuit or electric devices in semiconductor techniques. However, the silicon light source is still playing a very important role for future science or technology. Therefore, there are many technologies to deposit silicon quantum dot on different matrixes at present. Among them, there are two kinds of most common matrix, including the silicon oxide (SiO2) and the silicon nitride (SiNX). These two kinds of matrixes have the same drawback in electric conductivity which is difficult to apply to the electric devices.
In our study, we proposed a new technique to deposit thin films on Si substrate. We use the zinc oxide to replace the silicon oxide (SiO2) and silicon nitride (SiNX) as matrix. By using co-sputter system the Si atom and zinc oxide atom can be sputtered to Si substrate simultaneously at room temperature, and then the as-deposited thin films were treated with various post-annealing condition.
In order to realize the silicon contents in the zinc oxide thin film, we deposit the Si target and Zinc oxide target at individually and using the formula to calculate the theory value of the contents of silicon in the Zinc oxide thin film. At the same time, we also identified the real content of silicon in the Zinc oxide thin film by Energy dispersive x-ray spectrum (EDX). In addition, the crystalline structure and chemical bonds of these films were analyzed by using Raman spectroscopy, X-ray Diffraction spectrum (XRD) and Fourier transformation infrared spectrometry (FTIR). Furthermore, the electric properties of the as-deposited ZnO-Si thin films can be measured by the Hall measurement then the Resistivity, Mobility and Carrier concentration also can be definition. In order to investigate the luminescence mechanism in silicon quantum dot under room temperature and different temperature, the ZnO-Si thin films were measured by the Photoluminescence spectrometry (PL) and the Temperature Depended Photoluminescence spectrometry.
Finally, the Transmission Electron Microscopy (TEM) to measure the quantum dot size and determine the crystalline of silicon dot.
[1] 游力蓁,“摻雜銻於以射頻電漿沉積之氧化鋅透明導電膜光電特性研究", 國立成功大學微電子工程研究所 (2005).
[2] D. S. Liu, C. C. Wu and C. T. Lee, “A Transparent and Conductive Film Prepared by RF Magnetron Cosputtering System at Room Temperature”, Jpn. J. Appl. Phys., vol.44, 5119 (2005).
[3] D. S. Liu, C. H. Lin, B. W. Huang and C. C. Wu, “Electrical, Optical and Material Properties of ZnO-Doped Indium-Tin Oxide Films Prepared Using Radio Frequency Magnetron Cosputtering System at Room Temperature”, Jpn. J. Appl. Phys., vol.45, 3526 (2006).
[4] D. S. Liu, C. H. Lin, F. C. Tsai and C. C. Wu, “Microstructure investigations of indium tin oxide films cosputtered with zinc oxide at room temperature”, J. Vac. Sci. Technol. A, vol. 24, 694 (2006).
[5] 吳榮勛, “低溫下利用氣相冷凝技術成長氧化鋅奈米結構光學特性分析”, 國立成功大學微電子工程研究所 (2005).
[6] M. Zerdali, S. Hamzaoui, F.H. Teherani and D. Rogers, “Growth of ZnO thin film on SiO2/Si substrate by pulsed laser deposition and study of their physical properties”, Mater. Lett., vol.60, 504 (2006)
[7] Z.Wang, H. Zhang1, L. Zhang, J. Yuan S. Yan and C. Wang, “Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction”, Nanotechnology, vol.14, 11 (2003).
[8] V.V. Siva Kumar, F. Singh, A. Kumar and D.K. Avasthi, “Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing”, Nuclear Instruments and Methods in Physics Research B, vol.244, 91 (2006)
[9] S.S. Deng, X.L. Wu and S.H. Yang, “Higher fullerene-coupled porous silicon systems with blue emission”, Acta Mater., vol.52, 1953 (2004).
[10] L. Dan and X. L. Wua, “Optical emission from SiOx nanoparticles irradiated by ultraviolet ozone”, J. Appl. Phys., vol. 94, 7288 (2003).
[11] F. Mazen, T. Baron, N. Buffet, N. Rochat, P. Mur, and M. N. Semeriac, “Influence of the Chemical Properties of the Substrate on Silicon Quantum Dot”, Nucleation Journal of The Electrochemical Society, vol.150, G203 (2003).
[12] F. Yuna, B. J. Hindsa, S. Hatatania, S. Odaa, Q. X. Zhaob and M. Willander, “Study of structural and optical properties of nanocrystalline silicon embedded in SiO2”, Thin Solid Films, vol.375, 137 (2000).
[13] C. Tsai, K. H. Li, D. S. Kinosky, R. Z. Qian, T. C. Hsu, J. T. Irby, S. K. Banerjee, A. F. Tasch, and J. C. Campbell, “Correlation between silicon hydride species and the photoluminescence intensity of porous silicon”, Appl. Phys. Lett., 60, 1700 (1992).
[14] G. G. Siu X. L. Wu, Y. Gu, and X. M. Bao, “Enhanced and stable photoluminescence from partially oxidized porous Si coated with Si thin films”, J. Appl. Phys., vol.88, 3781 (2000).
[15] P. H. Khoi, N. T. Thanh, P. H. Duong and N. X. Nghia, “Investigation of Vibrational and Photoluminescence Spectra of Nanocrystalline Silicon by Micro-Raman Spectroscopy Using Various Laser Powers”, J. Raman Spectrosc., vol.30, 385 (1999).
[16] R. Kumar, Y. Kitoh, and K. Hara “Effect of surface treatment on visible luminescence of porous silicon: Correlation with hydrogen and oxygen terminators”, Appl. Phys. Lett., vol.63, 3032 (1993).
[17] M. Bedjaoui, B. Despax, M. Caumonta and C. Bonafos, “Si nanocrystal-containing SiOx (x < 2) produced by thermal annealing of PECVD realized thin films”, Mater. Sci. and Eng. B, vol.124, 508 (2005).
[18] F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides”, Opt. Mater., vol.26, 33 (2004).
[19] H. S. Kwack, Y. Sun and Y. H. Choa, “Anomalous temperature dependence of optical emission in visible-light-emitting amorphous silicon quantum dots”, Appl. Phys. Lett., vol.83, 2901 (2003).
[20] M. L. Brongersma, P. G. Kik and A. Polman, “Size-dependent electron-hole exchange interaction in Si nanocrystals”, Appl. Phys. Lett., vol.76, 351 (2000).
[21] S. Kim, Y. M. Park, S. H. Choi, K. J. Kim and D. H. Choi, “Temperature-dependent carrier recombination processes in nanocrystalline Si/SiO2 multilayers studied by continuous-wave and time-resolved photoluminescence”, J. Phys. D: Appl. Phys., vol.40 1339 (2007).
[22] P. Mishra and K.P. Jain, “Raman, photoluminescence and optical absorption studies on nanocrystalline silicon”, Mater. Sci. and Engineering B, vol.95, 202 (2002).
[23] F. Xiua, Z. Yanga, D. Zhaoa, J. Liua, K. Alimb, Balandinb and C. Haddonc, “ZnO growth on Si with low-temperature ZnO buffer layers by ECR-assisted MBE”, J. Crystal Growth, vol.286, 61 (2006).
[24] P. Nunes, E. Fortunato and R. Martins, “Influence of the post-treatment on the properties of ZnO thin films”, Thin Solid Films, vol.383, 277 (2001).
[25] S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. Wong and B. Kettersonb, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn”, Appl. Phys. Lett., vol.75, 2761 (1999).
[26] X. P. Zhu, T. Yukawa, T. Kishi, M. Hirai, H. Suematsu, W. Jiang and K. Yatsui, “Synthesis of light-emitting silicon nanoparticles by intense pulsed ion-beam evaporation”, J. Nano. Res., vol.7, 669 (2005).
[27] S. Zhang, W. Zhang and J. Yuan, “The preparation of photoluminescent Si nanocrystal-SiOX films by reactive evaporation”, Thin Solid Films, vol.326, 92 (1998).
[28] Y. Honda, S. Shida, K. Goda and T. Nagata, “Structure and optical properties of light-emitting Si films fabricated by neutral cluster deposition and subsequent high-temperature annealing”, J. Non-Crystalline Solids, vol.352 2109 (2006).
[29] S. Vijayalakshmia, Z. Iqbalb, M.A. Georgec, J. Federicid and H. Grebela, “Characterization of laser ablated silicon thin”, Thin Solid Films, vol.339, 102 (1999).
[30] K. Nakamura, M. Hiratai and K. Yokota, “Annealing Effect on Enlargement of Grain Size in Nanocrystalline Silicon Films Deposited by Silicon Evaporation with Oxygen and Argon Radicals”, Jpn. J. Appl. Phys., vol. 44, 701 (2005).
[31] 邵勝添, ”佈植氮離子與碳離子於未摻雜氮化鎵之特性研究”, 國立中央大學光電科學研究所 (2001).
[32] M. Ehbrecht, H. Ferkel and F. Huiskena, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction”, J. Appl. Phys., vol.78, 5302 (1995).
[33] G. Faraci, S. Gibilisco, P. Russo and A. R. Pennisi, “Modified Raman confinement model for Si nanocrystals”, Phys. Rev. B, vol.73, 033307 (2006).
[34] M. hirasawa, T. orii and T. seto, “Effect of insitu annealing on physical properties of Si nanoparticles synthesized by pulsed laser ablation”, Appl. Phys. A, vol.79, 1421 (2004).
[35] G. H. Li, K. Ding, Y. Chen, H. X. Han and Z. P. Wang, “Photoluminescence and Raman scattering of silicon nanocrystals prepared by silicon ion implantion into SiO2 films”, J. Appl. Phys., vol.88, 1439 (2000).
[36] P. Mishra and K.P. Jain, “Raman, photoluminescence and optical absorption studies onnanocrystalline silicon”, Materials Science and Engineering B, vol.95, 202 (2002).
[37] X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix”, Phys. Rev. B, vol.72, 195313 (2005).
[38] Y. Igasaki and H. Saito, “Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire”, J. Appl. Phys., vol.69, 2190 (1991).
[39]T. Minami, H. Sato, H. Nanto and S. Takata, “High conductive and transparent Silicon doped Zinc Oxide thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., vol.25, L776 (1986).
[40]K. C. Park, D. Y. Ma and K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films, vol.305, 201 (1997).
[41]B. H. Choi and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering” Thin solid films, vol.193, 712 (1990).
[42] T.Minami, H. Sato, H. Nanto and S. Takata, “Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering”, Jpn. J. Appl. Phys., vol.24, L781 (1986).
[43] S. Ghosh, A. Sarkar, S. Chaudhuri and A. K. Pal “Grain boundary scattering in aluminium-doped ZnO films”, Thin Solid Films, vol.205, 64 (1991).
[44] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions”, J. Electrochem. Soc., vol.148, G110 (2001).
[45] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photo luminescence in ZnO phosphor powders”, J. Appl. Phys., vol.79, 7983 (1996).
[46]E. G. Bylander, “Surface effects on the low-energy cathodoluminescence of zinc oxide”, J. Appl. Phys., vol.49, 1188 (1978).
[47] K. Ozaki and M. Gomi, “Strong Ultraviolet Photoluminescence in Polycrystalline ZnO Sputtered Films”, Jpn. J. Appl. Phys., vol. 41, 5614 (2002).
[48] Y. Y. Peng1, T. E. Hsieh1 and C. H. Hsu, “White-light emitting ZnO–SiO2 nanocomposite thin films prepared by the target-attached sputtering method”, Nanotechnology, vol.17, 174 (2006).
[49] S. Guha and S. B. Qadri, “Characterization of Si nanocrystals grown by annealing SiO2 films with uniform concentrations of implanted Si”, J. Appl. Phys., vol.88, 3954 (2000).
[50] U. S. Sias, L. Amaral, M. Behar and H. Boudinov, “Photoluminescence behavior of Si nanocrystals as a function of the implantation temperature and excitation power density”, J. Appl. Phys., vol.98, 034312 (2005).
[51] G. Franzo, F. Iacona, C. Spinella, S. Cammarata and M. Grimaldi, “Size dependence of the luminescence properties in Si nanocrystals”, Mater. Sci. and Engineering B vol.69–70, 454 (2000).
[52] B. P. Zhang, N. T. Binh and Y. Segawa, “Optical properties of ZnO rods formed by metalorganic chemical vapor Deposition”, Appl. Phys. Lett., vol. 83, 1635 (2003).
[53] F. Y. Jen, Y. C. Lu, C. Y. Chen, H. C. Wang and C. C. Yang, “Temperature-dependent exciton dynamics in a ZnO thin film”, Appl. Phys. Lett., vol.87, 252117 (2005).
[54] Y. Zhang, B. Lin, X. Sun and Z. Fu, “Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol–gel process”, Appl. Phys. Lett., vol.86, 131910 (2005).
[55] T. W. Kim, C. H. Cho, B. H. Kim and S. J. Parka, ”Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., vol.88, 123102 (2006).
[56] S. S. Rink, D. A. B. Millar and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites”, Phys. Rev. B, vol.35, 8113 (1987).
[57] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, vol.46, 15578 (1992).
[58] G. Ledoux, J. Gong, F. Huiskena, O. Guillois and C. Reynaud “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement”, Appl. Phys. Lett., vol.80, 4834 (2002).
[59] X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix”, Phys. Rev. B, vol.72, 195313 (2005).
[60] T. Orii1, M. Hirasawa, T. Seto, N. Aya and S. Onari, “Temperature dependence of photoluminescence from mono-dispersed Si nanoparticles”, Eur. Phys. J. D, vol.24, 119 (2003).
[61] A. Tewary, D. Kekatpure, and M. Brongersma, “Controlling defect and Si nanoparticle luminescence from silicon oxynitride films with CO2 laser annealing”, Appl. Phys. Lett., Vol.88, 093114 (2006).
[62] T. Moritaz and N. Takami, “Nano Si Cluster-SiOx-C Composite Material as High-Capacity Anode Material for Rechargeable Lithium Batteries”, J. Elect. Soci., Vol. 153, A425 (2006).
[63] V. Kapaklis, C. Politis, P. Poulopoulos and P. Schweiss, “Photoluminescent Si nanoparticles embedded in silicon oxide matrix”, Mater. Sci. Engine. B Vol.124, 475 (2005).
[64] H. F. Hsu, T. F. Chiang, H. C. Hsu and L. J. Chen, “Shape Transition in the Initial Growth of Titanium Silicide Clusters on Si(111)”, Jpn. J. Appl. Phys., Vol. 43, 4541 (2004).
[65] M. Takeguchi, K. Furuya and K. Yoshihara, “Structure Study of Si Nanocrystals Formed by Electron-Induced Reduction of SiO2 at High Temperature”, Jpn. J. Appl. Phys., Vol. 38, 7140 (1999).
[66] P. Roura, J. Farjas, A. Pinyol and E. Bertran, “The crystallization temperature of silicon nanoparticles”, Nanotechnology, Vol.18, 175705 (2007).