簡易檢索 / 詳目顯示

研究生: 周盈秀
Chou, Ying-Hsiu
論文名稱: 利用嗜菌體呈現系統建構人類單鏈抗體基因庫
Construction of human phage-displayed scFv library
指導教授: 張權發
Chang, Chuan-Fa
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 52
中文關鍵詞: 單鏈抗體嗜菌體
外文關鍵詞: carbohydrate, scFv, phage
相關次數: 點閱:50下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗體可以廣泛地應用在診斷、治療、實驗研究。目前有兩種產生高親和
    力單株抗體的技術,一種是用細胞融合技術將B 細胞與骨髓瘤細胞融合成融
    合瘤細胞 (hybridoma) 產生出單株抗體,另一種是利用轉殖鼠產生人類抗體,
    第三種是將抗體基因表現在嗜菌體 (phage)的外殼蛋白 (capsid)。儘管融合瘤
    細胞是主要產生單株抗體的技術,但這項技術還是存在許多問題。例如,融
    合瘤細胞來自於老鼠,由於抗原性而無法直接應用在人體。因此對於科學家
    來說嗜菌體抗體呈現系統 (phage antibody display system) 更具意義。我們試
    著利用嗜菌體呈現系統建構出人類單鏈抗體基因庫。首先我們先從290 位捐
    贈者血液中分離出淋巴球的mRNA 進行反轉錄聚合連鎖反應產生重鏈和輕
    鏈的cDNA。重鏈和輕鏈cDNA 片段利用31 種不同的引子 (primer)進行聚合
    連鎖反應產生重鏈和輕鏈變異區。將這些重鏈和輕鏈變異區利用重疊聚合
    酵素連鎖反應和52 種不同的連接子 (linker) 產生單鏈抗體 (scFv) 基因庫。
    這52 種不同的連接子皆含有15 個胺基酸 (Gly4Ser)3,在末端帶有不同序列可
    以和用其他不同的引子合成的 VH 基因和VL 基因重疊。純化過的 scFv 片段和
    質體pIGT5 接合後,利用電穿孔法將已接合scFv 片段送入大腸桿菌 HB2151
    中。為了增加那些表現單鏈抗體的嗜菌體的親和力,因此我們建立了製備了
    質體pIGT5 和建立了Ex-phage 系統。質體pIGT5 在scFv-III 融合蛋白之間擁
    有胰蛋白 (Trypsin) 和腸激 (Enterokinase) 兩個切位。Ex-phage 的pIII 基
    因前有一個amber 終止密碼,在無法抑制amber 終止密碼的大腸桿菌株
    HB2151 中不會表現pIII,使表現在嗜菌體外的pIII 全部被scFv-pIII 融合蛋白
    替代。因此接上抗原的嗜菌體可以加入胰蛋白和腸激切除單鏈抗體,再
    去感染大腸桿菌HB2151 做下一次的篩選。在完成單鏈抗體基因庫後,我們
    希望可以應用這單鏈抗體基因庫搜尋到特定的醣抗體。

    Antibodies are applied not only for diagnosis, but also in research and
    clinical treatments. In order to generate high-affinity monoclonal antibodies, three
    techniques have been developed including hybridoma engineering, transgenic mice
    and phage-displayed antibody libraries. Although the hybridoma technology is the
    major tool for monoclonal antibody production, it still has some problems. For
    example, the methodology cannot be curable directly in human disease. Hence, the
    phage antibody display system has become more attractive to scientists. We
    attempted to develop a nave human single chain antibody (scFv) library by phage
    display system. We first extracted total RNA from the leukocytes of peripheral
    blood from 290 volunteers. The heavy chain and light chain cDNA fragments were
    synthesized by reverse transcription reaction. Thirty-one forward and reverse
    primers were used for the cloning of heavy chain variable regions (VH) and light
    chain variable regions (VL) fragments from the cDNA fragments. The cloned heavy
    and light chain variable regions were amplified and linked with linkers by
    overlapping PCR. The linkers encoded the 15 amino acids (Gly4Ser)3 that have
    overhangs of perfect complementarity with VH and VL genes. The purified scFv
    fragments were ligated to the phagemid pIGT5 for electroporation into Escherichia
    coli HB2151 competent cells. In order to increase the binding avidity of scFv
    during bio-paining, we had constructed pIGT5 phagemid which expressed trypsin
    and enterokinase cutting site between pIII and scFv. We also established Ex-phage
    in which the pIII protein could not be synthesized in non-amber suppressed strain
    owing to the amber codon before pIII. Hence, the binding phage can be released
    after enzymatic digestion and amplified for next paining. After the library
    constructed, we will apply this antibody library to discover new carbohydrate
    antibodies.

    Contents Contents ........................................................................................................ I Figure contents .......................................................................................... III 摘要 ............................................................................................................... 1 Abstract ........................................................................................................ 2 致謝 ............................................................................................................... 3 Introduction .................................................................................................. 4 Phage Display ............................................................................................. 4 M13 phage .................................................................................................. 4 Application of phage display ...................................................................... 5 Amber codon .............................................................................................. 6 Biopanning ................................................................................................. 7 Phage titer analysis ..................................................................................... 8 Antibody ..................................................................................................... 8 Carbohydrate antibodies ........................................................................... 10 Study Design ............................................................................................... 11 Materials and Methods .............................................................................. 12 Bacteria Strain .......................................................................................... 12 Peripheral Blood Samples ........................................................................ 12 RNA Extraction ........................................................................................ 13 Reverse Transcription Reaction (RT) ....................................................... 13 Polymerase Chain Reaction (PCR) of variable region .............................. 13 Polymerase Chain Reaction (PCR) of scFv linker DNA .......................... 14 Overlap PCR ............................................................................................ 14 Construction of Plasmid pIGT5 ................................................................ 15 Mutagenesis of helper phage .................................................................... 16 Electroporation and Rescue of phage display library ............................... 16 Phage titration ........................................................................................... 17 Western Blot ............................................................................................. 17 Biopanning ............................................................................................... 17 Table.1 ...................................................................................................... 19 Results ......................................................................................................... 23 Generation of pIGT5 phagemid for display of scFv fragment .................. 23 Construction of scFv gene repertoires ...................................................... 23 Ex-phage production ................................................................................ 24 Phage rescue and analysis......................................................................... 24 Phage peptide selection for glycan ........................................................... 25 Discussion ................................................................................................... 26 Conclusion .................................................................................................. 29 Reference .................................................................................................... 30 Figures ........................................................................................................ 39 自述 ............................................................................................................. 47 Figure contents Figure 1. Construction of pIGT5 phagemid ............................................ 39 Figure 2. PCR amplification of human variable heavy (VH) and variable light (VL). .................................................................................................... 40 Figure 3. PCR amplification of scFv linker DNA. ................................... 42 Figure 4. Assembly of scFv repertoires by overlapping PCR reaction. . 43 Figure 5. Mutagenesis of Ex-phage genome. ........................................... 44 Figure 6. The effect of Ex-phage packing on scFv displayed on recombinant phage. ................................................................................... 45 Figure 7. Alignment of phage-displayed peptide sequences selected for Lex and GlcNAc. ........................................................................................ 46

    Azzazy, H.M., and Highsmith, W.E., Jr. (2002). Phage display technology: clinical
    applications and recent innovations. Clin Biochem 35, 425-445.
    Baek, H., Suk, K.H., Kim, Y.H., and Cha, S. (2002). An improved helper phage
    system for efficient isolation of specific antibody molecules in phage display.
    Nucleic Acids Res 30, e18.
    Barbas, C.F., 3rd, Kang, A.S., Lerner, R.A., and Benkovic, S.J. (1991). Assembly
    of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl
    Acad Sci U S A 88, 7978-7982.
    Bass, S., Greene, R., and Wells, J.A. (1990). Hormone phage: an enrichment
    method for variant proteins with altered binding properties. Proteins 8, 309-314.
    Benhar, I. (2001). Biotechnological applications of phage and cell display.
    Biotechnol Adv 19, 1-33.
    Bruggemann, M. (2001). Human antibody expression in transgenic mice. Arch
    Immunol Ther Exp (Warsz) 49, 203-208.
    Bruggemann, M., and Taussig, M.J. (1997). Production of human antibody
    repertoires in transgenic mice. Curr Opin Biotechnol 8, 455-458.
    Caro, L.G., and Schnos, M. (1966). The attachment of the male-specific
    bacteriophage F1 to sensitive strains of Escherichia coli. Proc Natl Acad Sci U S A
    56, 126-132.
    Cole, S.P., Campling, B.G., Atlaw, T., Kozbor, D., and Roder, J.C. (1984). Human
    monoclonal antibodies. Mol Cell Biochem 62, 109-120.
    Couldrey, C., and Green, J.E. (2000). Metastases: the glycan connection. Breast
    Cancer Research 2, 321-323.
    Deng, S.J., MacKenzie, C.R., Sadowska, J., Michniewicz, J., Young, N.M., Bundle,
    D.R., and Narang, S.A. (1994). Selection of antibody single-chain variable
    fragments with improved carbohydrate binding by phage display. J Biol Chem 269,
    9533-9538.
    Dyson, M.R., Germaschewski, V., and Murray, K. (1995). Direct measurement via
    phage titre of the dissociation constants in solution of fusion phage-substrate
    complexes. Nucleic Acids Res 23, 1531-1535.
    Greenwood, J., Hunter, G.J., and Perham, R.N. (1991). Regulation of filamentous
    bacteriophage length by modification of electrostatic interactions between coat
    protein and DNA. J Mol Biol 217, 223-227.
    Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J.,
    McCafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., et al.
    (1993). Human anti-self antibodies with high specificity from phage display
    libraries. EMBO J 12, 725-734.
    Hakomori, S. (1996). Tumor malignancy defined by aberrant glycosylation and
    sphingo(glyco)lipid metabolism. Cancer Res 56, 5309-5318.
    Hines, J.C., and Ray, D.S. (1980). Construction and characterization of new
    coliphage M13 cloning vectors. Gene 11, 207-218.
    Hoess, R.H. (2001). Protein design and phage display. Chem Rev 101, 3205-3218.
    Holliger, P., and Hoogenboom, H. (1998). Antibodies come back from the brink.
    Nature Biotechnology 16, 1015-1016.
    Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P., and
    Winter, G. (1991). Multi-subunit proteins on the surface of filamentous phage:
    methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids
    Res 19, 4133-4137.
    Hudson, P.J. (1999). Recombinant antibody constructs in cancer therapy. Curr Opin
    Immunol 11, 548-557.
    Itoh, K., Inoue, K., Tezuka, T., Tada, H., Hashimoto, Y., Masuko, T., and Suzuki,
    T. (2003). Molecular structural and functional characterization of tumor
    suppressive anti-ErbB-2 monoclonal antibody by phage display system. J Biochem
    133, 239-245.
    Jiao, Y., Zhao, P., Zhu, J., Grabinski, T., Feng, Z., Guan, X., Skinner, R.S., Gross,
    M.D., Hay, R.V., Tachibana, H., et al. (2005). Construction of human naive Fab
    library and characterization of anti-met Fab fragment generated from the library.
    Mol Biotechnol 31, 41-54.
    Johansson, R., Ohlin, M., Jansson, B., and Ohlson, S. (2006). Transiently binding
    antibody fragments against Lewis x and sialyl-Lewis x. J Immunol Methods 312,
    20-26.
    Kohler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting
    antibody of predefined specificity. Nature 256, 495-497.
    Lee, T.Y., Lin, C.T., Kuo, S.Y., Chang, D.K., and Wu, H.C. (2007). Peptidemediated
    targeting to tumor blood vessels of lung cancer for drug delivery. Cancer
    Res 67, 10958-10965.
    Lee, T.Y., Wu, H.C., Tseng, Y.L., and Lin, C.T. (2004). A novel peptide
    specifically binding to nasopharyngeal carcinoma for targeted drug delivery.
    Cancer Res 64, 8002-8008.
    Lin, N.T., Liu, T.J., Lee, T.C., You, B.Y., Yang, M.H., Wen, F.S., and Tseng, Y.H.
    (1999). The adsorption protein genes of Xanthomonas campestris filamentous
    phages determining host specificity. J Bacteriol 181, 2465-2471.
    Liu, T.J., You, B.Y., Lin, N.T., Yang, M.T., and Tseng, Y.H. (1998). Purification
    and expression of the gene III protein from filamentous phage phi Lf. Biochem
    Biophys Res Commun 242, 113-117.
    Lo, A., Lin, C.T., and Wu, H.C. (2008). Hepatocellular carcinoma cell-specific
    peptide ligand for targeted drug delivery. Mol Cancer Ther 7, 579-589.
    MacKenzie, C.R., Hirama, T., Deng, S.J., Bundle, D.R., Narang, S.A., and Young,
    N.M. (1996). Analysis by surface plasmon resonance of the influence of valence on
    the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J Biol
    Chem 271, 1527-1533.
    Marasco, W.A., LaVecchio, J., and Winkler, A. (1999). Human anti-HIV-1 tat sFv
    intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J Immunol
    Methods 231, 223-238.
    Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and
    Winter, G. (1991). By-passing immunization - human-antibodies from v-gene
    libraries displayed on phage. Journal of Molecular Biology 222, 581-597.
    Marvin, D.A. (1998). Filamentous phage structure, infection and assembly. Curr
    Opin Struct Biol 8, 150-158.
    Marvin, D.A., and Hohn, B. (1969). Filamentous bacterial viruses. Bacteriol Rev
    33, 172-209.
    Marvin, D.A., Welsh, L.C., Symmons, M.F., Scott, W.R., and Straus, S.K. (2006).
    Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of
    phage assembly at the bacterial membrane. J Mol Biol 355, 294-309.
    Mayer, B., Funke, I., and Johnson, J.P. (1996). High expression of a Lewis(x)-
    related epitope in gastric carcinomas indicates metastatic potential and poor
    prognosis. Gastroenterology 111, 1433-1446.
    McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. (1990). Phage
    antibodies: filamentous phage displaying antibody variable domains. Nature 348,
    552-554.
    Messing, J. (1993). M13 cloning vehicles. Their contribution to DNA sequencing.
    Methods Mol Biol 23, 9-22.
    Nielsen, U.B., and Marks, J.D. (2000). Internalizing antibodies and targeted cancer
    therapy: direct selection from phage display libraries. Pharm Sci Technolo Today 3,
    282-291.
    Novotny, C., Raizen, E., Knight, W.S., and Brinton, C.C., Jr. (1969). Functions of
    F pili in mating-pair formation and male bacteriophage infection studies by
    blending spectra and reappearance kinetics. J Bacteriol 98, 1307-1319.
    Oh, M.Y., Joo, H.Y., Hur, B.U., Jeong, Y.H., and Cha, S.H. (2007). Enhancing
    phage display of antibody fragments using gill-amber suppression. Gene 386, 81-
    89.
    Parmley, S.F., and Smith, G.P. (1988). Antibody-selectable filamentous fd phage
    vectors: affinity purification of target genes. Gene 73, 305-318.
    Pasqualini, R., and Ruoslahti, E. (1996). Organ targeting in vivo using phage
    display peptide libraries. Nature 380, 364-366.
    Peer, D., Karp, J.M., Hong, S., FaroKhzad, O.C., Margalit, R., and Langer, R.
    (2007). Nanocarriers as an emerging platform for cancer therapy. Nature
    Nanotechnology 2, 751-760.
    Perelson, A.S., and Oster, G.F. (1979). Theoretical studies of clonal selection:
    minimal antibody repertoire size and reliability of self-non-self discrimination. J
    Theor Biol 81, 645-670.
    Rader, C. (2009). Overview on concepts and applications of Fab antibody
    fragments. Curr Protoc Protein Sci Chapter 6, Unit 6 9.
    Richard, M., Perreault, J., Gane, P., el Nemer, W., Cartron, J.P., and St-Louis, M.
    (2006). Phage-derived monoclonal anti-Lu-a. Transfusion 46, 1011-1017.
    Rodi, D.J., and Makowski, L. (1999). Phage-display technology--finding a needle
    in a vast molecular haystack. Curr Opin Biotechnol 10, 87-93.
    Rondot, S., Koch, J., Breitling, F., and Dubel, S. (2001). A helper phage to improve
    single-chain antibody presentation in phage display. Nat Biotechnol 19, 75-78.
    Roy, A., and Mitra, S. (1970). Increased fragility of Escherichia coli after infection
    with bacteriophage M13. J Virol 6, 333-339.
    Sakai, K., Shimizu, Y., Chiba, T., Matsumoto-Takasaki, A., Kusada, Y., Zhang, W.,
    Nakata, M., Kojima, N., Toma, K., Takayanagi, A., et al. (2007). Isolation and
    characterization of phage-displayed single chain antibodies recognizing
    nonreducing terminal mannose residues. 1. A new strategy for generation of anticarbohydrate
    antibodies. Biochemistry 46, 253-262.
    Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindquist, E., Schier, R.,
    Hemingsen, G., Wong, C., Gerhart, J.C., and Marks, J.D. (1998). Efficient
    construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S
    A 95, 6157-6162.
    Smith, G.P. (1985). Filamentous fusion phage - novel expression vectors that
    display cloned antigens on the virion surface. Science 228, 1315-1317.
    Smith, G.P., and Scott, J.K. (1993). Libraries of peptides and proteins displayed on
    filamentous phage. Methods in Enzymology 217, 228-257.
    Spada, S., Krebber, C., and Pluckthun, A. (1997). Selectively infective phages
    (SIP). Biol Chem 378, 445-456.
    Specthrie, L., Bullitt, E., Horiuchi, K., Model, P., Russel, M., and Makowski, L.
    (1992). Construction of a microphage variant of filamentous bacteriophage. J Mol
    Biol 228, 720-724.
    Stopar, D., Spruijt, R.B., Wolfs, C.J., and Hemminga, M.A. (2003). Protein-lipid
    interactions of bacteriophage M13 major coat protein. Biochim Biophys Acta 1611,
    5-15.
    Su, J.L., Lai, K.P., Chen, C.A., Yang, C.Y., Chen, P.S., Chang, C.C., Chou, C.H.,
    Hu, C.L., Kuo, M.L., Hsieh, C.Y., et al. (2005). A novel peptide specifically
    binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth.
    Cancer Res 65, 4827-4835.
    Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw,
    J.C., McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. (1996). Human
    antibodies with sub-nanomolar affinities isolated from a large non-immunized
    phage display library. Nat Biotechnol 14, 309-314.
    Verma, R., Boleti, E., and George, A.J. (1998). Antibody engineering: comparison
    of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods
    216, 165-181.
    Ward, E.S., Gussow, D., Griffiths, A.D., Jones, P.T., and Winter, G. (1989).
    Binding activities of a repertoire of single immunoglobulin variable domains
    secreted from Escherichia coli. Nature 341, 544-546.
    Weichel, M., Jaussi, R., Rhyner, C., and Crameri, R. (2008). Display of E. coli
    Alkaline Phosphatase pIII or pVIII Fusions on Phagemid Surfaces Reveals
    Monovalent Decoration with Active Molecules. Open Biochem J 2, 38-43.
    Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. (1994). Making
    antibodies by phage display technology. Annu Rev Immunol 12, 433-455.
    Woof, J.M., and Burton, D.R. (2004). Human antibody-Fc receptor interactions
    illuminated by crystal structures. Nat Rev Immunol 4, 89-99.
    Xiong, C.Y., Natarajan, A., Shi, X.B., Denardo, G.L., and Denardo, S.J. (2006).
    Development of tumor targeting anti-MUC-1 multimer: effects of di-scFv unpaired
    cysteine location on PEGylation and tumor binding. Protein Eng Des Sel 19, 359-
    367.
    Yang, X.D., Jia, X.C., Corvalan, J.R., Wang, P., Davis, C.G., and Jakobovits, A.
    (1999). Eradication of established tumors by a fully human monoclonal antibody to
    the epidermal growth factor receptor without concomitant chemotherapy. Cancer
    Res 59, 1236-1243.
    Zhang, J.L., Gou, J.J., Zhang, Z.Y., Jing, Y.X., Zhang, L., Guo, R., Yan, P., Cheng,
    N.L., Niu, B., and Xie, J. (2006). Screening and evaluation of human single-chain
    fragment variable antibody against hepatitis B virus surface antigen. Hepatobiliary
    Pancreat Dis Int 5, 237-241.
    Zhang, W., Matsumoto-Takasaki, A., Kusada, Y., Sakaue, H., Sakai, K., Nakata,
    M., and Fujita-Yamaguchi, Y. (2007). Isolation and characterization of phagedisplayed
    single chain antibodies recognizing nonreducing terminal mannose
    residues. 2. Expression, purification, and characterization of recombinant single
    chain antibodies. Biochemistry 46, 263-270.

    下載圖示 校內:2014-07-29公開
    校外:2019-07-29公開
    QR CODE