簡易檢索 / 詳目顯示

研究生: 黃智新
Huang, Chih-Hsin
論文名稱: 應用電感模式於印刷曲折型天線之設計與分析
Application of an Inductor Model to Design and Analysis of Printed Meander Line Antennas
指導教授: 楊世銘
Yang, Shih-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 62
中文關鍵詞: 印刷曲折型天線電感模式
外文關鍵詞: inductor model, printed meander line antenna
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 曲折型天線具有重量輕、體積小之特性,符合高性能飛行體之要求。曲折型天線使用曲折區域,可在頻率不變的條件下降低偶極和單極天線的長度,也可在長度不變下降低天線的使用頻率,使其可安裝於機艙外側、尾翼或是主翼當中,將天線對空氣動力流場造成的影響減至最低,進而減少耗油量。雖然曲折型天線是將單極或是偶極天線加上曲折區域所發展而來,可是曲折型天線的一些特徵,像是幅射場型、指向性或是增益值等,與原來的天線並無太大的差異。本文中將曲折型天線分成曲折區域以及輻射區域兩部份進行分析,前者的作用與電感相同,後者則可看成是幅射特徵與線型天線相似的類單極天線,由類單極天線所引起的負輻射電抗被曲折區域所提供的正電抗值所抵消,也就形成的共振的曲折型天線。本論文計畫使用電感模式量化曲折區域對天線的影響,並建立一種有效的曲折型天線設計方式。
    本文於驗證方面,利用所建立的曲折型天線設計方式,於印刷電路板上設計多組共振頻率為900MHz的印刷曲折型天線,並進行共振頻率分析,所得之共振頻率皆在900MHz附近。分析結果同時顯示,雖然天線的幅射場型、指向性與增益值有稍微變化,不過相對於長度的變化來說,仍是相當理想。

    In high performance aircraft, spacecraft and missile applications, where size, weight, and performance are of major constraints, shorter length of antennas are desirable. A meander line antenna has several meander line sections so as to shorten the length from the corresponding dipole and monopole antennas. Such design can be installed in wings, tail and fuselage to completely eliminate the drag problem or minimize the aerodynamic disturbances. This thesis employs inductor model to quantify the influence of the meander line sections for efficient and effective design process. A meander line antenna can be modeled by the combination of several meander line sections and radiation elements. The former are similar to inductors while the latter constitutes a quasi-monopole antenna whose radiation characteristics are similar to a wire antenna. The negative radiation reactance induced by the quasi-printed monopole antenna can be compensated by the positive input reactance from the multiple meander line sections so as to facilitate a resonating printed meander line antenna. Analysis and Experiment show that the inductor model provides an efficient design of the printed meander line antennas.

    ABSTRACT i CONTENTS ii LIST OF TABLES iv LIST OF FIGURES v CHAPTER I INTRODUCTION 1 1.1 Motivation and Objective 1 1.2 Literature Review 1 1.3 Outline 3 II WIRE ANTENNAS AND MEANDER LINE ANTENNAS 4 2.1 Introduction 4 2.2 Dipole Antennas 5 2.3 Monopole Antennas 8 2.4 Meander Line Antennas 10 2.4.1 Meander line antenna in free space 10 2.4.2 Meander line antenna on printed circuit board 12 2.5 Design of Wire and Printed Meander Line Antennas 15 2.6 Summary 16 III DESIGN AND ANALYSIS OF MEANDER LINE ANTENNA 27 3.1 Introduction 27 3.2 Design and Analysis of Printed Monopole Antenna on PCB 27 3.3 Design and Analysis of Printed Meander Line Antenna at 900 MHz 29 3.4 Analysis of Printed Meander Line Antennas of Constant Length 31 3.4.1 A printed meander line antenna with a single meander line section 32 3.4.2 A printed meander line antenna with multiple meander line sections 33 3.5 The Comparison of the Printed Monopole and Meander Line Antennas 36 3.6 Fabrication and Analysis of Printed Meander Line Antenna on PCB 38 3.7 Summary 39 IV SUMMARY AND CONCLUSIONS 58 REFERENCES 60

    Ali, M. and Stuchly, S.S., “A Meander-Line Bow-Tie Antenna,” IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 1566-1569, 1996.
    Best, S.R. and Morrow, J.D., “Limitations of Inductive Circuit Model Representations of Meander Line Antennas,” IEEE Antennas and Propagation Society International Symposium, vol. 1, pp. 852-855, 2003.
    Buddipole. (http://www.buddipole.com), 2005.
    Choi, W., Kwon, S. and Lee, B., “Ceramic Chip Antenna Using Meander Conductor Lines,” Electronics Letters, vol. 37, no. 15, pp. 933-934, 2001.
    Chen, H.-T., Wong, K.-L. and Chiou T.-W., “PIFA with a Meandered and Folded Patch for the Dual-Band Mobile Phone Application,” IEEE Transactions on Antennas and Propagation, vol. 51, iss. 9, pp. 2468-2471, 2003.
    Elsherbeni, A.Z., Huang, C.-W.P. and Smith, C.E., “Wide Band Meander Line Antenna for Wireless Communication Systems,” IEEE-APS Conference on Antennas and Propagation for Wireless Communications, pp. 17-20, 2000.
    Ghione, G. and Naldi, C., “Analytical Formulas for Coplanar Lines in Hybrid and Monolithic MICS,” Electronics Letters, vol. 20, pp. 179-181, 1984.
    Hilberg, W., “From Approximations to Exact Relations for Characteristic Impedances,” IEEE Transactions on Microwave Theory and Techniques, vol. 17, iss. 5, pp. 259-265, 1969.
    Huang, C.-W.P., Elsherbeni A.Z., Chen J.-J. and Smith C.E., ”FDTD Characterization of Meander Line Antennas for RF and Wireless Communications,” Progress in Electromagnetics Research, pier 24, pp. 185-199, 1999.
    Huang, C.-F. and Eh, P.-L., “Design of a Dual-Band Chip Antenna with Material Loading Technique,” IEEE Topical Conference on Wireless Communication Technology, pp. 154-155, 2003.
    Hsiao, H.-M. and Lu, J.-H., “A Planar Dual Meander Line Antenna for Multi-band Mobile Handsets,” Microwave and Optical Technology Letters, vol. 48, iss. 5, pp. 883-888, 2006.
    Kim, H.-H., Kim, K.-Y., Lee, J.-H. and Woo, J.-M., “Surface-Mounted Chip Dielectric Ceramic Antenna for PCS Phone,” The 5th International Symposium on Antennas, Propagation and EM Theory, pp. 582-585, 2000.
    Lu, J.-H. and Wang, Y.-D., “A Planar Triple-band Meander Line Antenna for Mobile Handsets,” IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 146-149, 2003.
    Liu, W.-C., Chen, W.-R. and Wu, C.-M., “Printed Double S-Shaped Monopole Antenna for Wideband and Multi-band Operation of Wireless Communications,” IEE Proceeding on Microwaves, Antennas and Propagation, vol. 151, no. 6, pp. 473-476, 2004.
    Liu, Y.-S., Sun, J.-S., Lu, R.-H. and Lee, Y.-J., “New Multiband Printed Meander Antenna for Wireless Applications,” Microwave and Optical Technology Letters, vol. 47, iss. 6, pp. 539-543, 2005.
    Moon, S., “Folded Meander Line and Multilayered Dielectric Chip Antenna for Surface Mount,” Microwave Conference, Asia-Pacific, vol. 2, pp. 472-475, Dec. 2001.
    Marrocco, G., Fonte, A. and Bardati, F., “Evolutionary Design of Miniaturized Meander-Line Antennas for RFID Applications,” IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 362-365, 2002.
    Michishita, N., Yamada, Y. and Nakakura, N., “Miniaturization of a Small Meander Line Antenna by Loading a High Material,” The 5th International Symposium on Multi-Dimensional Mobile Communications Proceedings, vol. 2, pp. 651-654, 2004.
    Nakano, H., Tagami, H., Yoshizawa, A. and Yamauchi, J., “Shortening Ratios of Modified Dipole Antennas,” IEEE Transactions on Antennas and Propagation, vol. 32, pp. 385-386, 1984.
    Nannapaneni, N.R., “Elements of Engineering Electromagnetics,” Pearson Education International, 6th Edition, Chap. 6, pp. 370-371, 2004.
    Nancymoon. (http://www.nancymoon.com), 2004.
    Pham, N.-T., Lee, G.-A. and Flaviis, F.-D., “Minimized Dual-Band Coupled Line Meander Antenna for System-In-a-Package Applications,” IEEE Antennas and Propagation Society Symposium, vol. 2, pp. 1451-1454, 2004.
    Rashed, J. and Tai C.-T., “A New Class of Wire Antennas,” Antennas and Propagation Society International Symposium, vol. 20, pp. 564-567, 1982.
    Suh, Y.-H. and Chang, K., “Low Cost Microstrip-Fed Dual Frequency Printed Dipole Antenna for Wireless Communications,” Electronics Letters, vol. 36, no. 14, pp. 1177-1179, 2000.
    Tong, K.-F., Luk, K.-M., Chan, C.-H. and Yung, E.-K.N., “A Miniature Monopole Antenna for Mobile Communications,” Microwave and Optical Technology Letters, vol. 27, iss. 4, pp. 262-263, 2000.
    Warnagiris, T.J. and Minardo, T.J., “Performance of a Meandered Line as an Electrically Small Transmitting Antenna,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 12, pp. 1797-1801, 1998.

    下載圖示 校內:2007-07-13公開
    校外:2007-07-13公開
    QR CODE