| 研究生: |
陳冠儒 Chen, Kuan-Ru |
|---|---|
| 論文名稱: |
生化及活體實驗探討抗病毒先天免疫對抗RNA病毒感染 Biochemical and functional study of antiviral innate immunity against RNA virus infection |
| 指導教授: |
凌斌
Ling, Pin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 先天免疫 、TBK1-associated protein in endolysosomes (TAPE)/CC2D1A 、RIG-I 、MDA5 、第一型干擾素 、腸病毒七十一型 、TLR3 |
| 外文關鍵詞: | Innate immunity, TBK1-associated protein in endolysosomes (TAPE)/CC2D1A, RIG-I, MDA5, Type I IFN, EV71, TLR3 |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
病毒引起的感染症每年都造成嚴重的發病率和致死率。病毒分子與宿主分子都會影響病毒感染的結果,此現象特別發生於嚴重的病毒感染,例如:禽流感病毒導致異常的發炎反應,產生過多的發炎激素,但較少的第一型干擾素。先天免疫系統不但提供第一道防線且可以進一步調控適應性免疫對抗病毒,因此了解先天免疫系統如何對抗病毒至關重要。第一型干擾素是病毒感染的細胞在早期所分泌關鍵的細胞激素,可以進一步活化抗病毒的先天免疫反應。Toll-like receptors(TLRs),細胞質RIG-I-like receptors(RLRs)和DNA sensors都可以偵測病毒核酸並活化第一型干擾素以對抗病毒感染,但連結RLRs偵測病毒到活化抗病毒反應的機制仍待更進一步的研究。TBK-1已知參與TLR3, TLR4, RLRs 及DNA sensor活化第一型干擾素。我們先前發現一個新的先天免疫調節分子稱為TAPE (TBK1-Associated Protein in Endolysosomes),也稱為CC2D1A/Freud-1/Aki-1。TAPE參與TLR3和TLR4活化第一型干擾素的路徑,此外從我們先前的研究結果發現TAPE在哺乳類細胞也參與RLRs活化第一型干擾素。因為這些原因,我對於利用遺傳學方法研究TAPE於調節RIG-I like receptor的角色感到興趣,並研究其調控的機制。另一方面,腸病毒71型是一個主要引起手足口症和神經系統疾病的病毒,但我們對於腸病毒71型引起的致病機制仍然不夠了解。最近的文獻顯示腸病毒71型和先天免疫系統之間的相互作用仍相當複雜。先天免疫系統如何偵測腸病毒71型感染並活化第一型干擾素對抗病毒免疫仍有待進一步研究。因此,我的工作著重在三個目標: (1) 活體外及活體實驗探討TAPE在先天免疫對抗RNA病毒感染所扮演的角色。(2) 探討TAPE如何調控RLR路徑的機制。(3) 探討先天免疫受體偵測腸病毒71型。關於目標1及目標2的研究,我們已經產生TAPE基因剔除小鼠及TAPE基因條件性剔除小鼠來研究TAPE基因的角色。在活體外實驗,以RLR ligand 刺激,TAPE 基因剔除的小鼠胚胎纖維母細胞及胎兒肝臟巨噬細胞後所表現的細胞激素降低。於流感病毒感染後,TAPE條件性剔除小鼠的死亡率比野生型(wild type)高。另外,以共軛焦顯微鏡觀察所得的結果發現,RLR ligand刺激後,RIG-I在細胞內的位置與TAPE重疊,而且移到含有 TAPE 及Rab5的內涵體(endosomes),因此早期內涵體可能參與RIG-I相關的活化訊息路徑。綜合以上活體和生化實驗的結果,我們認為TAPE參與RIG-I活化第一型干擾素以對抗病毒的重要性。關於目標3的研究,我們一開始篩選幾個RNA sensor (RIG-I, MDA5 及TLR3)參與偵測腸病毒71型活化第一型干擾素。值得注意的是,表達TLR3的HEK293細胞可以偵測腸病毒71型感染並活化第一型干擾素媒介的抗病毒反應,而TLR3基因沉默於小鼠及人類的初代免疫細胞會降低腸病毒71型活化第一型干擾素。我們的結果也顯示腸病毒71型會造成TLR3的蛋白表達下降,腸病毒71型會利用2A蛋白酶降低TLR3的蛋白表達。綜合目標3的結果,我們不只證明TLR3對於腸病毒71型感染的重要性,此外也揭示腸病毒71型蛋白酶2A會影響TLR3而躲避先天免疫防禦的現象。
Viral infections cause the severe morbidity and mortality of humans worldwide every year. Both viral and host factors contribute to the outcome of viral infection. Particularly, severe viral infections like avian influenza viruses often lead to aberrant inflammatory responses, which are manifested by excessive inflammatory cytokines but lower expression of type I interferons (IFNs). Thus, it is crucial to better understand how the host innate immune system interacts with viruses because the host innate immune system serves the first line of host defenses and also coordinates the following adaptive immune responses to viral infection. Type I IFNs are key cytokines secreted from infected cells for triggering antiviral innate immunity at the early viral infection. Endosomal Toll-like receptors (TLRs), cytosolic RIG-I-like receptors (RLRs) and DNA sensors function to detect viral nucleic acids to trigger type I IFN antiviral responses. The underlying mechanisms linking RLR-mediated viral recognition to antiviral immunity remain to be further explored. TBK1 is a key protein kinase linking TLR3, TLR4, RLRs and DNA sensors to type I IFN activation. Through our previous work, we uncovered an innate immune regulator termed TAPE (TBK1-Associated Protein in Endolysosomes), also known as CC2D1A/Freud-1/Aki-1. TAPE is critical for linking the TLR3 and TLR4 pathways to type I interferon induction. Further, previous findings from our lab showed that TAPE was involved in RLRs-mediated IFN-β promoter induction in mammalian cells. Given these facts, I was interested in exploring whether TAPE plays a critical role in regulating the RIG-I like receptor pathways by genetic approaches and then investigating the mechanisms of this regulation. In addition, Enterovirus 71 (EV71) has emerged as a major pathogen causing the hand, foot and mouth disease and neurological disorders. The pathogenesis of these EV71-mediated diseases is still poorly understood. Recent evidence reveals an intricate interplay between EV71 and the innate immune system. Yet, the mechanisms of how the innate immune system detects EV71 infection to elicit type I interferon (IFN)-mediated antiviral immunity are still not fully understood. My thesis work focuses on three aims: (1) Aim 1 is to assess ex vivo and in vivo functions of TAPE in antiviral innate immunity during RNA virus infection. (2) Aim 2 is to explore molecular mechanisms of how TAPE regulates the RLR pathways. (3) Aim 3 is to study the innate immune recognition of enterovirus 71 infection. Regarding the Aim 1 and Aim 2 studies, TAPE-direct and conditional knockout mice have been generated for my study purpose. Results from ex vivo study showed that TAPE-deficient mouse embryonic fibroblasts (MEFs) and fetal liver macrophages were defective in cytokine production upon RLR ligand stimulation. In addition, TAPE conditional knockout mice exhibited a more severe mortality than wild type mice upon influenza A virus (IAV) infection. Confocal microscopic results showed that RIG-I was colocalized with TAPE after RLR ligand stimulation. Furthermore, our results showed that RIG-I was co-localized with an endosomal marker Rab5 and TAPE after RLR ligand stimulation, suggesting that early endosomes are involved in RIG-I signaling. Together, our in vivo and biochemical results suggest a crucial role for TAPE in linking the RIG-I pathway to type I IFN-mediated antiviral responses. Regarding the Aim 3 study, we first screened several viral RNA sensors, including TLR3, RIG-I and MDA5, for detecting EV71 infection to trigger type I IFN production. Of note, ectopic expression of TLR3 in HEK293 cells conferred the detection of EV71 infection to induce type-I IFN-mediated antiviral responses. Silencing of TLR3 in mouse and human primary immune cells impaired the activation of IFN-β upon EV71 infection. Our results also demonstrated that TLR3 was a target of EV71 infection. EV71 protease 2A was implicated in the downregulation of the TLR3 protein level on the post-transcriptional level. Together, our results not only demonstrate the importance of the TLR3 pathway in response to EV71 infection but also reveal the involvement of EV71 protease 2A in subverting innate immune defenses by targeting TLR3.
Abe, Y., K. Fujii, N. Nagata, O. Takeuchi, S. Akira, H. Oshiumi, M. Matsumoto, T. Seya, and S. Koike. 2012. The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice. J Virol 86:185-194.
Abzug, M.J. 2014. The enteroviruses: problems in need of treatments. J Infec 68 Suppl 1:S108-114.
Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801.
Al-Tawashi, A., S.Y. Jung, D. Liu, B. Su, and J. Qin. 2012. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity. J Biol Chem 287:14644-14658.
Alexopoulou, L., A.C. Holt, R. Medzhitov, and R.A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732-738.
Allen, I.C., M.A. Scull, C.B. Moore, E.K. Holl, E. McElvania-TeKippe, D.J. Taxman, E.H. Guthrie, R.J. Pickles, and J.P. Ting. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556-565.
Basel-Vanagaite, L., R. Attia, M. Yahav, R.J. Ferland, L. Anteki, C.A. Walsh, T. Olender, R. Straussberg, N. Magal, E. Taub, V. Drasinover, A. Alkelai, D. Bercovich, G. Rechavi, A.J. Simon, and M. Shohat. 2006. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J Med Genet 43:203-210.
Bek, E.J., and P.C. McMinn. 2012. The Pathogenesis and Prevention of Encephalitis due to Human Enterovirus 71. Curr Infect Dis Rep 14:397-407.
Berger, M., C.Y. Hsieh, M. Bakele, V. Marcos, N. Rieber, M. Kormann, L. Mays, L. Hofer, O. Neth, L. Vitkov, W.D. Krautgartner, D. von Schweinitz, R. Kappler, A. Hector, A. Weber, and D. Hartl. 2012. Neutrophils express distinct RNA receptors in a non-canonical way. J Biol Chem 287:19409-19417.
Blander, J.M. 2014. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev. Immunol 14:601-618.
Bonham, K.S., M.H. Orzalli, K. Hayashi, A.I. Wolf, C. Glanemann, W. Weninger, A. Iwasaki, D.M. Knipe, and J.C. Kagan. 2014. A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction. Cell 156:705-716.
Bozym, R.A., E. Delorme-Axford, K. Harris, S. Morosky, M. Ikizler, T.S. Dermody, S.N. Sarkar, and C.B. Coyne. 2012. Focal adhesion kinase is a component of antiviral RIG-I-like receptor signaling. Cell Host Microbe 11:153-166.
Brown, V., R.A. Brown, A. Ozinsky, J.R. Hesselberth, and S. Fields. 2006. Binding specificity of Toll-like receptor cytoplasmic domains. Eur J Immunol 36:742-753.
Broz, P., and D.M. Monack. 2013. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev. Immunol 13:551-565.
Brubaker, S.W., K.S. Bonham, I. Zanoni, and J.C. Kagan. 2015. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257-290.
Casrouge, A., S.Y. Zhang, C. Eidenschenk, E. Jouanguy, A. Puel, K. Yang, A. Alcais, C. Picard, N. Mahfoufi, N. Nicolas, L. Lorenzo, S. Plancoulaine, B. Senechal, F. Geissmann, K. Tabeta, K. Hoebe, X. Du, R.L. Miller, B. Heron, C. Mignot, T.B. de Villemeur, P. Lebon, O. Dulac, F. Rozenberg, B. Beutler, M. Tardieu, L. Abel, and J.L. Casanova. 2006. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308-312.
Castanier, C., D. Garcin, A. Vazquez, and D. Arnoult. 2010. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 11:133-138.
Chan, Y.K., and M.U. Gack. 2015. RIG-I-like receptor regulation in virus infection and immunity. Curr Opin Virol 12:7-14.
Chang, C.H., L.C. Lai, H.C. Cheng, K.R. Chen, Y.Z. Syue, H.C. Lu, W.Y. Lin, S.H. Chen, H.S. Huang, A.L. Shiau, H.Y. Lei, J. Qin, and P. Ling. 2011. TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J Biol Chem 286:7043-7051.
Chen, K.R., C.H. Chang, C.Y. Huang, C.Y. Lin, W.Y. Lin, Y.C. Lo, C.Y. Yang, E.W. Hsing, L.F. Chen, S.R. Shih, A.L. Shiau, H.Y. Lei, T.H. Tan, and P. Ling. 2012. TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. J Biol Chem 287:32216-32221.
Chen, Y.C., C.K. Yu, Y.F. Wang, C.C. Liu, I.J. Su, and H.Y. Lei. 2004. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol 85:69-77.
Chiang, H.S., Y. Zhao, J.H. Song, S. Liu, N. Wang, C. Terhorst, A.H. Sharpe, M. Basavappa, K.L. Jeffrey, and H.C. Reinecker. 2014. GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol 15:63-71.
Childress, J.L., M. Acar, C. Tao, and G. Halder. 2006. Lethal giant discs, a novel C2-domain protein, restricts notch activation during endocytosis. Curr Biol 16:2228-2233.
Chong, P., C.C. Liu, Y.H. Chow, A.H. Chou, and M. Klein. 2015. Review of enterovirus 71 vaccines. Clin Infec Dis 60:797-803.
Chow, J., K.M. Franz, and J.C. Kagan. 2015. PRRs are watching you: Localization of innate sensing and signaling regulators. Virology 479-480:104-109.
Collinet, C., M. Stoter, C.R. Bradshaw, N. Samusik, J.C. Rink, D. Kenski, B. Habermann, F. Buchholz, R. Henschel, M.S. Mueller, W.E. Nagel, E. Fava, Y. Kalaidzidis, and M. Zerial. 2010. Systems survey of endocytosis by multiparametric image analysis. Nature 464:243-249.
Diamond, M.S., and M. Farzan. 2013. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev. Immunol 13:46-57.
Diebold, S.S., T. Kaisho, H. Hemmi, S. Akira, and C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529-1531.
Dixit, E., S. Boulant, Y. Zhang, A.S. Lee, C. Odendall, B. Shum, N. Hacohen, Z.J. Chen, S.P. Whelan, M. Fransen, M.L. Nibert, G. Superti-Furga, and J.C. Kagan. 2010. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668-681.
Drusenheimer, N., B. Migdal, S. Jackel, L. Tveriakhina, K. Scheider, K. Schulz, J. Groper, K. Kohrer, and T. Klein. 2015. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS Genet 11:e1005749.
Feng, Q., S.V. Hato, M.A. Langereis, J. Zoll, R. Virgen-Slane, A. Peisley, S. Hur, B.L. Semler, R.P. van Rij, and F.J. van Kuppeveld. 2012. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep 2:1187-1196.
Feng, Q., M.A. Langereis, M. Lork, M. Nguyen, S.V. Hato, K. Lanke, L. Emdad, P. Bhoopathi, P.B. Fisher, R.E. Lloyd, and F.J. van Kuppeveld. 2014a. Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J Virol 88:3369-3378.
Feng, Q., M.A. Langereis, and F.J. van Kuppeveld. 2014b. Induction and suppression of innate antiviral responses by picornaviruses. Cytokine Growth Factor Rev 5:577-585.
Fujii, K., N. Nagata, Y. Sato, K.C. Ong, K.T. Wong, S. Yamayoshi, M. Shimanuki, H. Shitara, C. Taya, and S. Koike. 2013. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci U S A 110:14753-14758.
Gack, M.U. 2014. Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens. J Virol 88:5213-5216.
Gack, M.U., Y.C. Shin, C.H. Joo, T. Urano, C. Liang, L. Sun, O. Takeuchi, S. Akira, Z. Chen, S. Inoue, and J.U. Jung. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916-920.
Gallagher, C.M., and J.A. Knoblich. 2006. The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11:641-653.
Gillingham, A.K., and S. Munro. 2003. Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641:71-85.
Gorbea, C., K.A. Makar, M. Pauschinger, G. Pratt, J.L. Bersola, J. Varela, R.M. David, L. Banks, C.H. Huang, H. Li, H.P. Schultheiss, J.A. Towbin, J.G. Vallejo, and N.E. Bowles. 2010. A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. J Biol Chem 285:23208-23223.
Goubau, D., S. Deddouche, and C. Reis e Sousa. 2013a. Cytosolic sensing of viruses. Immunity 38:855-869.
Goubau, D., S. Deddouche, and E.S.C. Reis. 2013b. Cytosolic sensing of viruses. Immunity 38:855-869.
Guillot, L., R. Le Goffic, S. Bloch, N. Escriou, S. Akira, M. Chignard, and M. Si-Tahar. 2005. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280:5571-5580.
Gurtler, C., and A.G. Bowie. 2013. Innate immune detection of microbial nucleic acids. Trends Microbiol 21:413-420.
Hardarson, H.S., J.S. Baker, Z. Yang, E. Purevjav, C.H. Huang, L. Alexopoulou, N. Li, R.A. Flavell, N.E. Bowles, and J.G. Vallejo. 2007. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. American journal of physiology. Heart and circulatory physiology 292:H251-258.
Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-1529.
Holm, C.K., S.R. Paludan, and K.A. Fitzgerald. 2013. DNA recognition in immunity and disease. Current opinion in immunology 25:13-18.
Horner, S.M., H.M. Liu, H.S. Park, J. Briley, and M. Gale, Jr. 2011. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A 108:14590-14595.
Horng, T., G.M. Barton, R.A. Flavell, and R. Medzhitov. 2002. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420:329-333.
Hornung, V., J. Ellegast, S. Kim, K. Brzozka, A. Jung, H. Kato, H. Poeck, S. Akira, K.K. Conzelmann, M. Schlee, S. Endres, and G. Hartmann. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994-997.
Hornung, V., S. Rothenfusser, S. Britsch, A. Krug, B. Jahrsdorfer, T. Giese, S. Endres, and G. Hartmann. 2002. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531-4537.
Hou, F., L. Sun, H. Zheng, B. Skaug, Q.X. Jiang, and Z.J. Chen. 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448-461.
Hsu, Y.Y., Y.N. Liu, W. Wang, F.J. Kao, and S.H. Kung. 2007. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 353:939-945.
Hui, K.P., S.M. Lee, C.Y. Cheung, H. Mao, A.K. Lai, R.W. Chan, M.C. Chan, W. Tu, Y. Guan, Y.L. Lau, and J.S. Peiris. 2011. H5N1 influenza virus-induced mediators upregulate RIG-I in uninfected cells by paracrine effects contributing to amplified cytokine cascades. J Infect Diss 204:1866-1878.
Ichinohe, T., H.K. Lee, Y. Ogura, R. Flavell, and A. Iwasaki. 2009. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206:79-87.
Ichinohe, T., I.K. Pang, and A. Iwasaki. 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11:404-410.
Irving, A.T., H. Mimuro, T.A. Kufer, C. Lo, R. Wheeler, L.J. Turner, B.J. Thomas, C. Malosse, M.P. Gantier, L.N. Casillas, B.J. Votta, J. Bertin, I.G. Boneca, C. Sasakawa, D.J. Philpott, R.L. Ferrero, and M. Kaparakis-Liaskos. 2014. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe15:623-635.
Iwasaki, A., and P.S. Pillai. 2014. Innate immunity to influenza virus infection. Nat Rev Immunol 14:315-328.
Jaekel, R., and T. Klein. 2006. The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell 11:655-669.
Jiang, X., L.N. Kinch, C.A. Brautigam, X. Chen, F. Du, N.V. Grishin, and Z.J. Chen. 2012. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36:959-973.
Kagan, J.C., V.G. Magupalli, and H. Wu. 2014. SMOCs: supramolecular organizing centres that control innate immunity. Nat Rev. Immunol 14:821-826.
Kagan, J.C., and R. Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125:943-955.
Kato, H., S. Sato, M. Yoneyama, M. Yamamoto, S. Uematsu, K. Matsui, T. Tsujimura, K. Takeda, T. Fujita, O. Takeuchi, and S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19-28.
Kato, H., O. Takeuchi, E. Mikamo-Satoh, R. Hirai, T. Kawai, K. Matsushita, A. Hiiragi, T.S. Dermody, T. Fujita, and S. Akira. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601-1610.
Kato, H., O. Takeuchi, S. Sato, M. Yoneyama, M. Yamamoto, K. Matsui, S. Uematsu, A. Jung, T. Kawai, K.J. Ishii, O. Yamaguchi, K. Otsu, T. Tsujimura, C.S. Koh, C. Reis e Sousa, Y. Matsuura, T. Fujita, and S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105.
Kawai, T., and S. Akira. 2006. Innate immune recognition of viral infection. Nat Immunol 7:131-137.
Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373-384.
Kawai, T., and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637-650.
Kawai, T., K. Takahashi, S. Sato, C. Coban, H. Kumar, H. Kato, K.J. Ishii, O. Takeuchi, and S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981-988.
Kim, B.H., A.R. Shenoy, P. Kumar, C.J. Bradfield, and J.D. MacMicking. 2012. IFN-inducible GTPases in host cell defense. Cell Host Microbe 12:432-444.
Koyama, S., K.J. Ishii, H. Kumar, T. Tanimoto, C. Coban, S. Uematsu, T. Kawai, and S. Akira. 2007. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 179:4711-4720.
Kumar, H., T. Kawai, H. Kato, S. Sato, K. Takahashi, C. Coban, M. Yamamoto, S. Uematsu, K.J. Ishii, O. Takeuchi, and S. Akira. 2006. Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med 203:1795-1803.
Kung, Y.A., C.T. Hung, Y.C. Liu, and S.R. Shih. 2014. Update on the development of enterovirus 71 vaccines. Expert Opin Biol Ther 14:1455-1464.
Kuo, R.L., L.T. Kao, S.J. Lin, R.Y. Wang, and S.R. Shih. 2013. MDA5 plays a crucial role in enterovirus 71 RNA-mediated IRF3 activation. PLoS One 8:e63431.
Kuo, R.L., S.H. Kung, Y.Y. Hsu, and W.T. Liu. 2002. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 83:1367-1376.
Lafaille, F.G., I.M. Pessach, S.Y. Zhang, M.J. Ciancanelli, M. Herman, A. Abhyankar, S.W. Ying, S. Keros, P.A. Goldstein, G. Mostoslavsky, J. Ordovas-Montanes, E. Jouanguy, S. Plancoulaine, E. Tu, Y. Elkabetz, S. Al-Muhsen, M. Tardieu, T.M. Schlaeger, G.Q. Daley, L. Abel, J.L. Casanova, L. Studer, and L.D. Notarangelo. 2012. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491:769-773.
Le Goffic, R., V. Balloy, M. Lagranderie, L. Alexopoulou, N. Escriou, R. Flavell, M. Chignard, and M. Si-Tahar. 2006. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog 2:e53.
Le Goffic, R., J. Pothlichet, D. Vitour, T. Fujita, E. Meurs, M. Chignard, and M. Si-Tahar. 2007. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178:3368-3372.
Lee, H.K., J.M. Lund, B. Ramanathan, N. Mizushima, and A. Iwasaki. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398-1401.
Lei, X., X. Liu, Y. Ma, Z. Sun, Y. Yang, Q. Jin, B. He, and J. Wang. 2010. The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol 84:8051-8061.
Lei, X., Z. Sun, X. Liu, Q. Jin, B. He, and J. Wang. 2011. Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol 85:8811-8818.
Lei, X., X. Xiao, Q. Xue, Q. Jin, B. He, and J. Wang. 2013. Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol 87:1690-1698.
Lemmon, M.A. 2008. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Bio 9:99-111.
Lester, S.N., and K. Li. 2014. Toll-like receptors in antiviral innate immunity. J Mol Biol 426:1246-1264.
Li, M.L., T.A. Hsu, T.C. Chen, S.C. Chang, J.C. Lee, C.C. Chen, V. Stollar, and S.R. Shih. 2002. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 293:386-395.
Lin, J.Y., and S.R. Shih. 2014. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci 21:18.
Lin, S.C., Y.C. Lo, and H. Wu. 2010. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885-890.
Lin, Y.W., S.L. Yu, H.Y. Shao, H.Y. Lin, C.C. Liu, K.N. Hsiao, E. Chitra, Y.L. Tsou, H.W. Chang, C. Sia, P. Chong, and Y.H. Chow. 2013. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS One 8:e57591.
Liu, H.M., Y.M. Loo, S.M. Horner, G.A. Zornetzer, M.G. Katze, and M. Gale, Jr. 2012. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11:528-537.
Liu, M.L., Y.P. Lee, Y.F. Wang, H.Y. Lei, C.C. Liu, S.M. Wang, I.J. Su, J.R. Wang, T.M. Yeh, S.H. Chen, and C.K. Yu. 2005. Type I interferons protect mice against enterovirus 71 infection. J Gen Virol 86:3263-3269.
Lu, A., V.G. Magupalli, J. Ruan, Q. Yin, M.K. Atianand, M.R. Vos, G.F. Schroder, K.A. Fitzgerald, H. Wu, and E.H. Egelman. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193-1206.
Lu, J., L. Yi, J. Zhao, J. Yu, Y. Chen, M.C. Lin, H.F. Kung, and M.L. He. 2012. Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol 86:3767-3776.
Lund, J.M., L. Alexopoulou, A. Sato, M. Karow, N.C. Adams, N.W. Gale, A. Iwasaki, and R.A. Flavell. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101:5598-5603.
Manzini, M.C., L. Xiong, R. Shaheen, D.E. Tambunan, S. Di Costanzo, V. Mitisalis, D.J. Tischfield, A. Cinquino, M. Ghaziuddin, M. Christian, Q. Jiang, S. Laurent, Z.A. Nanjiani, S. Rasheed, R.S. Hill, S.B. Lizarraga, D. Gleason, D. Sabbagh, M.A. Salih, F.S. Alkuraya, and C.A. Walsh. 2014. CC2D1A regulates human intellectual and social function as well as NF-kappaB signaling homeostasis. Cell Rep 8:647-655.
Martinelli, N., B. Hartlieb, Y. Usami, C. Sabin, A. Dordor, N. Miguet, S.V. Avilov, E.A. Ribeiro, Jr., H. Gottlinger, and W. Weissenhorn. 2012. CC2D1A is a regulator of ESCRT-III CHMP4B. J Mol Biol 419:75-88.
Matsuda, A., Y. Suzuki, G. Honda, S. Muramatsu, O. Matsuzaki, Y. Nagano, T. Doi, K. Shimotohno, T. Harada, E. Nishida, H. Hayashi, and S. Sugano. 2003. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22:3307-3318.
Meng, T., and J. Kwang. 2014. Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J Virol 88:5803-5815.
Meylan, E., J. Curran, K. Hofmann, D. Moradpour, M. Binder, R. Bartenschlager, and J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167-1172.
Miller, S., and J. Krijnse-Locker. 2008. Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6:363-374.
Miyashita, M., H. Oshiumi, M. Matsumoto, and T. Seya. 2011. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 31:3802-3819.
Mukherjee, A., S.A. Morosky, L. Shen, C.R. Weber, J.R. Turner, K.S. Kim, T. Wang, and C.B. Coyne. 2009. Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions. J Biol Chem 284:6486-6494.
Nakamura, A., M. Naito, T. Tsuruo, and N. Fujita. 2008. Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol Cell Biol 28:5996-6009.
Nakamura, N., J.R. Lill, Q. Phung, Z. Jiang, C. Bakalarski, A. de Maziere, J. Klumperman, M. Schlatter, L. Delamarre, and I. Mellman. 2014. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509:240-244.
Negishi, H., T. Osawa, K. Ogami, X. Ouyang, S. Sakaguchi, R. Koshiba, H. Yanai, Y. Seko, H. Shitara, K. Bishop, H. Yonekawa, T. Tamura, T. Kaisho, C. Taya, T. Taniguchi, and K. Honda. 2008. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci U S A 105:20446-20451.
Nishimura, Y., M. Shimojima, Y. Tano, T. Miyamura, T. Wakita, and H. Shimizu. 2009. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 15:794-797.
Odendall, C., E. Dixit, F. Stavru, H. Bierne, K.M. Franz, A.F. Durbin, S. Boulant, L. Gehrke, P. Cossart, and J.C. Kagan. 2014. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 15:717-726.
Onoguchi, K., K. Onomoto, S. Takamatsu, M. Jogi, A. Takemura, S. Morimoto, I. Julkunen, H. Namiki, M. Yoneyama, and T. Fujita. 2010. Virus-infection or 5'ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS Pathog 6:e1001012.
Oshiumi, H., M. Matsumoto, K. Funami, T. Akazawa, and T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161-167.
Oshiumi, H., M. Matsumoto, S. Hatakeyama, and T. Seya. 2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284:807-817.
Oshiumi, H., M. Miyashita, M. Okamoto, Y. Morioka, M. Okabe, M. Matsumoto, and T. Seya. 2015. DDX60 Is Involved in RIG-I-Dependent and Independent Antiviral Responses, and Its Function Is Attenuated by Virus-Induced EGFR Activation. Cell Rep 11:1193-1207.
Oshiumi, H., M. Okamoto, K. Fujii, T. Kawanishi, M. Matsumoto, S. Koike, and T. Seya. 2011. The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. J Immunol 187:5320-5327.
Oshiumi, H., K. Sakai, M. Matsumoto, and T. Seya. 2010. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur J Immunol 40:940-948.
Pang, I.K., P.S. Pillai, and A. Iwasaki. 2013. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proc Natl Acad Sci U S A 110:13910-13915.
Peisley, A., B. Wu, H. Xu, Z.J. Chen, and S. Hur. 2014. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509:110-114.
Pichlmair, A., and C. Reis e Sousa. 2007. Innate recognition of viruses. Immunity 27:370-383.
Pichlmair, A., O. Schulz, C.P. Tan, T.I. Naslund, P. Liljestrom, F. Weber, and C. Reis e Sousa. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314:997-1001.
Rayamajhi, M., and E.A. Miao. 2014. The RIP1-RIP3 complex initiates mitochondrial fission to fuel NLRP3. Nat Immunol 15:1100-1102.
Rogaeva, A., K. Galaraga, and P.R. Albert. 2007. The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. J Neurosci Res 85:2833-2838.
Sabbah, A., T.H. Chang, R. Harnack, V. Frohlich, K. Tominaga, P.H. Dube, Y. Xiang, and S. Bose. 2009. Activation of innate immune antiviral responses by Nod2. Nat Immunol 10:1073-1080.
Sadler, A.J., and B.R. Williams. 2008. Interferon-inducible antiviral effectors. Nat Rev. Immunol 8:559-568.
Sato, S., K. Li, T. Kameyama, T. Hayashi, Y. Ishida, S. Murakami, T. Watanabe, S. Iijima, Y. Sakurai, K. Watashi, S. Tsutsumi, Y. Sato, H. Akita, T. Wakita, C.M. Rice, H. Harashima, M. Kohara, Y. Tanaka, and A. Takaoka. 2015. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42:123-132.
Schoenemeyer, A., B.J. Barnes, M.E. Mancl, E. Latz, N. Goutagny, P.M. Pitha, K.A. Fitzgerald, and D.T. Golenbock. 2005. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 280:17005-17012.
Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140:821-832.
Seiya Yamayoshi, K.F.a.S.K. 2014. Receptors for enterovirus 71. Emerg Microbes Infect 3:doi:10.1038/emi.2014.1049.
Seo, S.U., H.J. Kwon, J.H. Song, Y.H. Byun, B.L. Seong, T. Kawai, S. Akira, and M.N. Kweon. 2010. MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection. J Virol 84:12713-12722.
Seth, R.B., L. Sun, and Z.J. Chen. 2006. Antiviral innate immunity pathways. Cell Res16:141-147.
Seth, R.B., L. Sun, C.K. Ea, and Z.J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669-682.
Shih, S.R., V. Stollar, and M.L. Li. 2011. Host factors in enterovirus 71 replication. J Virol 85:9658-9666.
Su, P.Y., Y.F. Wang, S.W. Huang, Y.C. Lo, Y.H. Wang, S.R. Wu, D.B. Shieh, S.H. Chen, J.R. Wang, M.D. Lai, and C.F. Chang. 2015. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol 89:4527-4538.
Sun, Q., L. Sun, H.H. Liu, X. Chen, R.B. Seth, J. Forman, and Z.J. Chen. 2006. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24:633-642.
Takeuchi, O., and S. Akira. 2009. Innate immunity to virus infection. Immunol Rev 227:75-86.
Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140:805-820.
Tan, C.W., C.L. Poh, I.C. Sam, and Y.F. Chan. 2013. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 87:611-620.
Thomas, P.G., P. Dash, J.R. Aldridge, Jr., A.H. Ellebedy, C. Reynolds, A.J. Funk, W.J. Martin, M. Lamkanfi, R.J. Webby, K.L. Boyd, P.C. Doherty, and T.D. Kanneganti. 2009. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:566-575.
Trinchieri, G. 2010. Type I interferon: friend or foe? J Exp Med 207:2053-2063.
Tsai, M.T., Y.H. Cheng, Y.N. Liu, N.C. Liao, W.W. Lu, and S.H. Kung. 2009. Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer. Antimicrob Agents Chemother 53:748-755.
Ulrichts, P., F. Peelman, R. Beyaert, and J. Tavernier. 2007. MAPPIT analysis of TLR adaptor complexes. FEBS Lett 581:629-636.
Unterholzner, L., S.E. Keating, M. Baran, K.A. Horan, S.B. Jensen, S. Sharma, C.M. Sirois, T. Jin, E. Latz, T.S. Xiao, K.A. Fitzgerald, S.R. Paludan, and A.G. Bowie. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11:997-1004.
Usami, Y., S. Popov, E.R. Weiss, C. Vriesema-Magnuson, A. Calistri, and H.G. Gottlinger. 2012. Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. J Virol 86:3746-3756.
Vabret, N., and J.M. Blander. 2013. Sensing microbial RNA in the cytosol. Front Immunol 4:468.
Vercammen, E., J. Staal, and R. Beyaert. 2008. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 21:13-25.
Wang, B., X. Xi, X. Lei, X. Zhang, S. Cui, J. Wang, Q. Jin, and Z. Zhao. 2013. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 9:e1003231.
Wang, J.P., A. Cerny, D.R. Asher, E.A. Kurt-Jones, R.T. Bronson, and R.W. Finberg. 2010. MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. J Virol 84:254-260.
Wang, Y.F., C.T. Chou, H.Y. Lei, C.C. Liu, S.M. Wang, J.J. Yan, I.J. Su, J.R. Wang, T.M. Yeh, S.H. Chen, and C.K. Yu. 2004. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 78:7916-7924.
Weber, M., H. Sediri, U. Felgenhauer, I. Binzen, S. Banfer, R. Jacob, L. Brunotte, A. Garcia-Sastre, J.L. Schmid-Burgk, T. Schmidt, V. Hornung, G. Kochs, M. Schwemmle, H.D. Klenk, and F. Weber. 2015. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 17:309-319.
Weng, K.F., M.L. Li, C.T. Hung, and S.R. Shih. 2009. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog 5:e1000593.
Wong, J., J. Zhang, B. Yanagawa, Z. Luo, X. Yang, J. Chang, B. McManus, and H. Luo. 2012. Cleavage of serum response factor mediated by enteroviral protease 2A contributes to impaired cardiac function. Cell Res22:360-371.
Wu, H. 2013. Higher-order assemblies in a new paradigm of signal transduction. Cell 153:287-292.
Xu, L.G., Y.Y. Wang, K.J. Han, L.Y. Li, Z. Zhai, and H.B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727-740.
Yamamoto, M., S. Sato, H. Hemmi, H. Sanjo, S. Uematsu, T. Kaisho, K. Hoshino, O. Takeuchi, M. Kobayashi, T. Fujita, K. Takeda, and S. Akira. 2002a. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324-329.
Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, and S. Akira. 2002b. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668-6672.
Yamayoshi, S., Y. Yamashita, J. Li, N. Hanagata, T. Minowa, T. Takemura, and S. Koike. 2009. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 15:798-801.
Yamazaki, T., and T. Ichinohe. 2014. Inflammasomes in antiviral immunity: clues for influenza vaccine development. Clin Exp Vaccine Res 3:5-11.
Yanai, H., T. Ban, Z. Wang, M.K. Choi, T. Kawamura, H. Negishi, M. Nakasato, Y. Lu, S. Hangai, R. Koshiba, D. Savitsky, L. Ronfani, S. Akira, M.E. Bianchi, K. Honda, T. Tamura, T. Kodama, and T. Taniguchi. 2009. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462:99-103.
Yang, B., H. Chuang, and K.D. Yang. 2009. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J 6:141.
Yao, H., M. Dittmann, A. Peisley, H.H. Hoffmann, R.H. Gilmore, T. Schmidt, J.L. Schmid-Burgk, V. Hornung, C.M. Rice, and S. Hur. 2015. ATP-dependent effector-like functions of RIG-I-like receptors. Mol Cell 58:541-548.
Yasuda, K., P. Yu, C.J. Kirschning, B. Schlatter, F. Schmitz, A. Heit, S. Bauer, H. Hochrein, and H. Wagner. 2005. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol 174:6129-6136.
Yasukawa, K., H. Oshiumi, M. Takeda, N. Ishihara, Y. Yanagi, T. Seya, S. Kawabata, and T. Koshiba. 2009. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal 2:ra47.
Yip, C.C., S.K. Lau, P.C. Woo, and K.Y. Yuen. 2013. Human enterovirus 71 epidemics: what's next? Emerg Health Threats J 6:19780.
Zeng, W., L. Sun, X. Jiang, X. Chen, F. Hou, A. Adhikari, M. Xu, and Z.J. Chen. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315-330.
Zhang, S.Y., E. Jouanguy, S. Ugolini, A. Smahi, G. Elain, P. Romero, D. Segal, V. Sancho-Shimizu, L. Lorenzo, A. Puel, C. Picard, A. Chapgier, S. Plancoulaine, M. Titeux, C. Cognet, H. von Bernuth, C.L. Ku, A. Casrouge, X.X. Zhang, L. Barreiro, J. Leonard, C. Hamilton, P. Lebon, B. Heron, L. Vallee, L. Quintana-Murci, A. Hovnanian, F. Rozenberg, E. Vivier, F. Geissmann, M. Tardieu, L. Abel, and J.L. Casanova. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522-1527.
Zhang, Z., T. Kim, M. Bao, V. Facchinetti, S.Y. Jung, A.A. Ghaffari, J. Qin, G. Cheng, and Y.J. Liu. 2011a. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34:866-878.
Zhang, Z., B. Yuan, M. Bao, N. Lu, T. Kim, and Y.J. Liu. 2011b. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12:959-965.
Zhang, Z., B. Yuan, N. Lu, V. Facchinetti, and Y.J. Liu. 2011c. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol 187:4501-4508.
Zhao, M., X.D. Li, and Z. Chen. 2010. CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. J Biol Chem 285:24372-24380.
Zhao, M., J. Raingo, Z.J. Chen, and E.T. Kavalali. 2011. Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. J Neurophysiol 105:1506-1515.
Zhu, K., J. Yang, K. Luo, C. Yang, N. Zhang, R. Xu, J. Chen, M. Jin, B. Xu, N. Guo, J. Wang, Z. Chen, Y. Cui, H. Zhao, Y. Wang, C. Deng, L. Bai, B. Ge, C.F. Qin, H. Shen, C.F. Yang, and Q. Leng. 2015. TLR3 signaling in macrophages is indispensable for the protective immunity of invariant natural killer T cells against enterovirus 71 infection. PLoS Pathog 11:e1004613.
Zust, R., L. Cervantes-Barragan, M. Habjan, R. Maier, B.W. Neuman, J. Ziebuhr, K.J. Szretter, S.C. Baker, W. Barchet, M.S. Diamond, S.G. Siddell, B. Ludewig, and V. Thiel. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137-143.
林宛瑩. 2011. 探討一個新的先天性免疫調控分子TAPE-L在病毒防禦的角色. 微生物及免疫學研究所. 國立成功大學.
林峻暘. 2012. 宿主先天免疫與流行病毒A行之交互作用. 微生物及免疫學研究所. 國立成功大學.
高禎鞠. 2015. 探討先天性免疫調控分子TAPE在發炎小體及細菌感染之角色. 微生物及免疫學研究所. 國立成功大學.
張竣泓. 2009. 探討一個新的endo-lysosomal adaptor,TAPE,在先天免疫的角色. 微生物及免疫學研究所. 國立成功大學.
羅尹秋. 2012. 探討先天性免疫調控分子TAPE與endolysosomes在RIG-I-like receptor訊息傳遞中的角色. 微生物及免疫學研究所. 國立成功大學
校內:2024-07-31公開