簡易檢索 / 詳目顯示

研究生: 羅伯特
Prans, Roberto
論文名稱: 二氧化碳趨勢分析及投入產出生命週期評估-以印尼電力業為例
Analysis of CO2 Emissions Trend and Input Output Life Cycle Assessment for Indonesia’s Electricity Sector
指導教授: 林素貞
Lin, Sue-Jane
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 116
外文關鍵詞: Electricity sector, CO2 emissions trend, Energy Consumption, Input-output Analysis, Input-Output Life Cycle Assessment
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The electricity sector has played an important role in causing the increase of carbon emissions and environmental damage in Indonesia. As a developing country, the demand of electricity rises year by year. This increase is directly proportional to both carbon emissions and environmental damages. The purposes of this research are to evaluate the electricity sector that has caused both carbon emissions and environmental impacts, and to analyze how the electricity sector is related to energy efficiency, increased GDP, and the environmental impacts of Indonesia.
    This study uses multiple methods to collect and process related data. The data collection were obtained from several official sources. Data processing in this research involves decoupling analysis, divisia index decomposition, input-output analysis, and input-output life cycle assessment. Decoupling analysis compares the results between OECD and Tapio method. Divisia index decomposition has been used for looking at the key sectors that caused high CO2 emissions in Indonesia. This method was divided
    into the CO2 emissions coefficient, fossil fuel structure, heat rate of electricity, electricity intensity and economic growth which it counts by the period wise and time series analysis. Input output analysis has been used in the linkage analysis, to determine the top 10 sectors from backward and forward analysis, as well as the sensibility of dispersion and power index of dispersion. IO-LCA is the last method that was used for calculating the environmental impact in Indonesia. Traci 2 and Impact 2002+ were applied as the methods to both measure and analyze the environmental impacts.
    This research found that the Indonesia’s and Asia’s financial crisis had big effects to the Indonesia’s economic and policies related to energy. The consumption of fossil fuels such as natural gas, coal, oil and electricity are the key sectors that need to be managed. Consumption of the electricity was found as the top primary sector, which should be addressed. From the Traci method it was determined that because of the electricity sector, the sector with highest environment impact in Indonesia is the eutrophication sector. From Impact 2002+ it was found that ionizing radiation and mineral extraction are the highest environmental impact caused from the electricity sector.

    Abstract i Acknowledgement iii List of tables vi List of figures viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objective 2 1.3 Research Framework and Scope 2 Chapter 2 Industrial Background 4 2.1 Industrial Structure 4 2.2 Industrial Impact to the Economic and Environment 8 Chapter 3 Literature Review and Methodology 10 3.1 Decoupling Analysis 10 3.2 Decomposition Analysis 11 3.3 Input – Output Analysis 13 3.4 Input – Output Life Cycle Assessment 15 3.4.1 Traci Model 18 3.4.2 Impact 2002+ model 20 3.5 Decoupling Method 24 3.5.1 OECD (2002) 3.5.2 Tapio (2005) 3.6 Decomposition Analysis Calculation 30 3.7 Input – Output Analysis Calculation 32 3.8 Input – Output Life Cycle Assessment Methodology 37 Chapter 4 Analysis and Discussions 51 4.1 Decoupling Analysis 51 4.1.1 Introduction 51 4.1.2 Data Consolidation and Result 51 4.1.2.1 Based on OECD (2002) 52 4.1.2.2 Based on Tapio (2005) 60 4.1.3 Summary 65 4.2 Decomposition Analysis 66 4.2.1 Introduction 66 4.2.2 Data Consolidation and Result 66 4.2.3 Summary 70 4.3 Input – Output Analysis (IO – Analysis) 71 4.3.1 Introduction 71 4.3.2 Data Consolidation and Result 72 4.3.3 Summary 79 4.4 Input – Output Life Cycle Assessment (IO – LCA) 80 4.4.1 Introduction 80 4.4.2 Data Consolidation 81 4.4.3 Limitations and Assumptions 82 4.4.4 Result of Traci Model 83 4.4.5 Summary 106 Chapter 5 Conclusions 107 5.1 Conclusions 107 5.2 Suggestions 108 REFERENCES 109 Appendix 1– Environment Impact and Electricity sector contribution in Traci model 116 Appendix 2– Characterization part in IMPACT 2002+ model 116

    1. Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363-374. doi: Doi 10.1016/S0140-9883(96)01022-5

    2. Bare JC, Gloria TP (2008) Environmental impact assessment taxonomy providing comprehensive coverage of midpoints, endpoints, damages, and areas of protection. J Clean Prod 16:1021–1035

    3. Barroin G (2003): Phosphore, Azote et Prolif&ation des Vegetaux Aquatiques. Courrier de l'Envirormement de I'INRA; no. 48, 13—25

    4. Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, Smith KR (2002a): Defining Intake Fraction. Environ Sci Technol 36, 207A-211A

    5. Bennett DH, Margni M, McKone TE, Jolliet O (2002b): Intake Fraction for Multimedia Pollutants: A Tool for Life Cycle Analysis and Comparative Risk Assessment. Risk Analysis 22, 903-916

    6. Choi, K. H., & Ang, B. W. (2012). Attribution of changes in Divisia real energy intensity index - An extension to index decomposition analysis. Energy Economics, 34(1), 171-176. doi: DOI 10.1016/j.eneco.2011.04.011

    7. Climent, F. and Pardo, A. (2007). Decoupling Factors on the Energy–Output Linkage: The Spanish Case. Energy Policy. 35: 522-528

    8. Crettaz P, Pennington D, Rhomberg L, Brand B, Jolliet O (2002): Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 1-Cancer Effects. Risk Analysis 22, 931-946

    9. De Freitas, L.C. and Kaneko, S. (2011). Decomposing the Decoupling of CO2 Emissions and Economic Growth in Brazil. Ecol. Econ. 70: 1459-1469.

    10. Frischknecht et al. (2003): ecoinvent Database, http://www.ecoinvent.ch/

    11. Goedkoop M, Spriensma R (2000): The Eco-indicator 99: A Damage Oriented Method for Life Cycle Assessment, Methodology REPort, second edition. Pre Consultants, Amersfoort (NL), Netherlands

    12. Guinee JB, Gorree M, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002): Life Cycle Assessment: An Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht (NL)

    13. Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2008). CO2 emissions in Greece for 1990-2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy, 33(3), 492-499. doi: DOI 10.1016/j.energy.2007.09.014

    14. Hauschild M, Wenzel H (1998): Environmental Assessment of Products - Vol. 2: Scientific Background, Chapman & Hall, London (UK)

    15. Hendrickson, C.T, Lave, L.B., Matthews, H.S. 2006. Environmental Life Cycle Assessment of Goods & Services: An Input-Output Approach. Resources for the future, Washington, DC.

    16. Humbert S, Margni, M. and Jolliet, O. 2005. IMPACT2002+ UserGuide for v2.1 Draft October 2005.

    17. IPCC. 2001: Climate change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC), htm://www.grida.no/climate/ipcc tar/, 385-391

    18. IPCC. 2006: Guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Tokyo, Japan. http://www.ipccnggip.iges.or.jp/public/2006gl/index.html

    19. Bare, J. 2011. Traci 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technology Environmental Policy. 13:687-696. DOI 10.1007/s10098-010-0338-9

    20. 13.Guo, W. S. (2009). Combination of life cycle assessment with decomposition analysis case study of fossil power plant. Master thesis, National Cheng Kung University (in Chinese).

    21. Jeroen, B., Guinee, Heijungs, R., and Kirk-Othmer. 2005. Encyclopedia of Chemical Technology. DOI:10.1002/0471238961.lifeguin.a01.

    22. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G and, Rosenbaum, Ralph. 2003. IMPACT 2002+ A New Life Cycle Impact Assessment Methodology. Int J LCA, 8(6), 324 – 330

    23. Jolliet O, Brent A, Goedkoop, M., Itsubo, N., Mueller-Wenk, R., Pefia, C., Schenk, R., Stewart, M., Weidema, B. 2003a: LCIA Definition Study of the SETAC-UNEP Life Cycle Initiative. UNEP, http:// www.unet~tie.or~tDC/SUstain/lcinitiadve/

    24. Joshi, S., 2000. Product Environmental Life-Cycle Assessment Using Input-Output Techniques. James Madison College. Michigan State University, East Lansing, MI 48824 USA. Industrial Ecology, 95-120

    25. Klopffer, W. 1997. Life Cycle Assessment: From the Beginning to the current state. 23, D-63303

    26. Koellner, T., Suh, S., Weber O., Moser, C., Scholz, R.W. 2007. Environmental Impacts of Conventional and Sustainable Investment Funds Compared Using Input-Output Life Cycle Assessment. Industrial Ecology,11, 41-60

    27. 26.Kwak, S. J., Yoo, S. H., & Chang, J. I. (2005). The role of the maritime industry in the Korean national economy: an input-output analysis. Marine Policy, 29(4), 371-383. doi: DOI 10.1016/j.marpol.2004.06.004

    28. Lave, L. B., Cobras-Flores, E., Hendrickson, C. and McMichael, F. 1995. Using input-output analysis to estimate economy wide discharges. Environmental Science & Technology, 29, 420 - 426.

    29. Lee, C. F., Lin, S. J., & Lewis, C. 2001. Devising an integrated methodology for analyzing energy used and CO2 emissions from Taiwan's petrochemical industries. Journal of Environmental Management, 63(4), 377-385. doi: DOI 10.1006/jema.2001.0479

    30. Leontief, W. 1936. Quantitative Input and Output Relations in the Economic System of the United States. Review of Economic Statistics, 18(3), 105-125. doi: Doi 10.2307/1927837

    31. Leontief, Wassily. 1970. Environmental REPercussions and Economic Structure - Input-Output Approach. Review of Economics and Statistics, 52(3), 262-271. doi: Doi 10.2307/1926294

    32. Lin, S. J., Lu, I. J., & Lewis, C. 2006. Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective. Energy Policy, 34(13), 1499-1507. doi: DOI 10.1016/j.enpol.2005.08.006

    33. Lin, S.J., & Chang, Y.F. 1997. Linkage effects and environmental impacts from oil consumption industries in Taiwan. Journal of Environment Management, 49(4), 393-411. Doi:DOI 10.1006/jema.1995.0119

    34. Lin, Sue J., & Chang, Tzu C. 1996. Decomposition of SO2, NOx and CO2 emissions from energy use of major economic sectors in Taiwan. Energy Journal, 17(1).

    35. Lin, S. J., Liu, C. H., & Lewis, C. 2012. CO2 Emission Multiplier Effects of Taiwan's Electricity Sector by Input-output Analysis. Aerosol and Air Quality Research, 12(2), 180-190. doi: DOI 10.4209/aaqr.2012.01.0006

    36. Liou, G. H. 2011. CO2 Emission Characteristics and Power Generation Efficiency Analyses of the Electricity Sector in Taiwan. P.h. D. thesis, National Cheng Kung University.

    37. Liu, C. H., Lin, S. J., & Lewis, C. 2012. Environmental Impacts of Electricity Sector in Taiwan by Using Input-Output Life Cycle Assessment: The Role of Carbon Dioxide Emissions. Aerosol and Air Quality Research, 12(5), 733-744. doi: DOI 10.4209/aaqr.2012.04.0090

    38. Lu, I. J., Lin, S. J., & Lewis, C. 2007. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy Policy, 35(6), 3226-3235. doi: DOI 10.1016/j.enpol.2006.11.003

    39. Luken, R.A. and Piras, S. 2011. A Critical Overview of Industrial Energy Decoupling Programs in Six Developing Countries in Asia. Energy Policy. 39: 3869-3872.

    40. Zhang, M., and Wang W., 2013. Decoupling analysis of electricity consumption from economic growth in China. Journal of Energy in Southern Africa. Volume 24 No.2

    41. OECD. 2002. Indicators to Measure Decoupling of Environmental Pressure form Economic Growth. Organization for Economic Co-operation and Development

    42. Payet J, Pennington D, Hauschild M., Jolliet O. 2003: Comparative Assessment of Toxic Impacts on Aquatic Ecosystems: The AMI method (Assessment of the Mean Impact). Submitted to Environ Toxicol Chem

    43. Penalver, S.R., Molina, M.R., Ballesta, J. 2014. Direct and indirect generation of waste in the Spanish paper industry. Waste Management 34, 3-11.

    44. Pennington D, Crettaz P, Tauxe A, Rhomberg, L., Brand, B., Jolliet, O. 2002: Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 2-Noncancer Effects. Risk Analysis 22, 947-963

    45. Pennington, D., Margni, M., Payet, J., Charles, R., Jolliet, O. 2003a: Estimating Cumulative Toxicological Risks and Potential Impacts for Human Health and Ecosystems in LCA. Submitted to Environ Toxicology Chemistry

    46. Sorrell, S., Lehtonen, M., Stapleton, L., Pujol, J. and Toby, C. 2012. Decoupling of Road Freight Energy Use from Economic Growth in the United Kingdom. Energy Policy. 41: 84-97.

    47. Steen, B. 1999: A systematic Approach to Environmental Priority Strategies in Product Development (EPS). 2000-General System Characteristics & 2000-Models and Data. Chalmers, CPM report: 1999, 4 and 5, httD://et~s.esa.chalmers.se/download.htm

    48. Tapio, P. 2005. Towards a Theory of Decoupling: Degrees of Decoupling in the EU and the Case of Road Traffic in Finland between 1970 and 2001. Transport Policy. 12: 137-151

    49. US Environmental Protection Agency. 2012. Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) software Name and Version Number: Traci version 2.0. User’s Manual. SOP No. S-10637-OP-1-0.

    50. Wang, W.W., Zhang, M., & Zhou, M., 2011. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 36, 5909-5915.

    51. Xu, X. Y., & Ang, B. W. 2013. Index decomposition analysis applied to CO2 emission studies. Ecological Economics, 93(0), 313-329. doi: http://dx.doi.org/10.1016/j.ecolecon.2013.06.007

    52. 70.Yuan, C. Q., Liu, S. F., & Xie, N. M. (2010). The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input-output analysis. Energy, 35(4), 1805-1812. doi: DOI 10.1016/j.energy.2009.12.035

    53. Zhao, M., Tan, L., Zhang, W., Ji, M., Liu, Y. and Yu, L. 2010. Decomposing the Influencing Factors of Industrial Carbon Emissions in Shanghai Using the LMDI Method. Energy. 35: 2505-2510.

    下載圖示 校內:2017-08-25公開
    校外:2017-08-25公開
    QR CODE