簡易檢索 / 詳目顯示

研究生: 劉庭瑜
Liu, Ting-Yu
論文名稱: 半自動雜訊標記應用於多音束無人船現代化水深測量點雲
Semi-Automatic Outlier Identification Applied to Point Clouds from Modernized Bathymetric Surveying using Unmanned Surface Vehicle with Multibeam Echosounder
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 151
中文關鍵詞: 無人船多音束測深現代化水深測量自動點雲雜訊濾除
外文關鍵詞: unmanned surface vehicle (USV), multibeam bathymetry, modernized bathymetry, automatic data-cleaning
相關次數: 點閱:32下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 綜觀現行水深測量作業流程,可能面臨垂直基準偏移、資料缺漏、資料處理耗時等問題。傳統水深測量作業須改正湧浪、動態吃水及潮汐等垂直變化因子;而潮位修正仰賴潮位觀測資料,其觀測量受陸域地表變動影響,更可能衍生基準偏移的問題。以橢球面為基準的測深,因前述垂直變化因子在化算海床橢球高的過程中將會一併抵銷,可避免諸多誤差來源以及基準偏移問題。另外,小型無人船已被證實可以搭載多音束測深儀(multibeam echosounder, MBES)執行測量作業,解決受限於場域造成資料缺漏的問題。然而MBES龐大的測深資料帶來大量資料處理人力與時間的需求,也使自動化處理測深資料的方法有其必要。本研究利用Otter Pro 無人船搭載Norbit iWBMS多音束測深儀,在臺南安平亞果遊艇港、高雄興達漁港以及宜蘭烏石遊艇港等場域進行水深測量。測得的原始資料以橢球高為基準面之測深模式處理:定位與姿態透過 Applanix POSpac 軟體解算後處理解;聲速透過聲速剖面儀(sound velocity profiler, SVP)之資料,以聲線追跡(ray-tracing)演算法進行改正;姿態改正部分則包含在直接地理定位過程。在點雲的自動化雜訊過濾方面,本研究結合quantile filter、多解析度的M-Estimator,以及Combined Uncertainty and Bathymetry Estimator (CUBE) 演算法產製數值高程模型,作為最終篩選雜訊的依據。為確保自動化過濾之成果品質,本研究亦標記需人工介入處理的區域。最後,本研究之成果以人工利用CARIS HIPS and SIPS 軟體套件處理的測深資料進行驗證,其中GNSS tide 的成果用來驗證本研究以橢球高為參考面的測深成果的正確性,同時評估點雲過濾之成效;而透過潮位修正到最低天文潮位面(Lowest Astronomical Tide, LAT)的成果加上離距模型(Separation Model, SEP),則用來驗證以橢球面為參考面測深之成效。在GNSS/INS整合解方面,研究成果顯示鬆耦合(loosely-coupled)與緊耦合(tightly-coupled)的成果並無顯著差異,但緊耦合解之精度略高於鬆耦合解的精度,故優先使用緊耦合解。在測深資料處理方面,在安平亞果遊艇港、興達漁港以及烏石遊艇港分別有95.51%、99.82%、97.34%的區域可自動化過濾。其成果與GNSS tide 人工處理成果的較差平均值在三個實驗場域均為 -0.007 m,但較差標準差的平均介於0.014 m到0.166 m。結果顯示本研究方法與GNSS tide 成果接近,惟在雜訊過濾方面,與人工處理之成果仍有些微差異。至於與CARIS經潮位修正之成果比較,在三個測區分別發現約0.07 m、0.25 m 以及-0.26 m的系統性偏差,推測與當地LAT基準、相對定位基站之高程基準或無人船垂直向定位精度之極限有關。

    Reviewing the current bathymetric survey workflows, there can be issues such as vertical datum shifts, data gaps, and time-consuming data processing. Traditional bathymetry must correct for vertical factors such as heave, dynamic draft, and tides. Tidal corrections rely on the observations from tide gauges, which can be affected by land motions, potentially inducing datum shifts. Ellipsoidally referenced bathymetry can avoid multiple error sources and datum shift issue, as the vertical factors can be eliminated in the process of calculating seafloor ellipsoid heights. In addition, small-sized unmanned surface vehicles (USVs) equipped with multibeam echosounders (MBES) have been proven capable of performing bathymetric surveying, addressing data gaps caused by site constraints. However, the large amount of the bathymetric data is often laborious for processing, prompting the necessity of automatic data-cleaning methods. This study utilizes the Otter Pro USV equipped with a Norbit iWBMS multibeam echosounder to conduct bathymetric surveys in An-ping Yacht Harbor in Tainan, Xing-da Fishery Harbor in Kaohsiung, and Wu-shi Yacht Port in Yilan. The raw data are processed in ellipsoidally referenced bathymetry scheme: the positioning and attitude are computed by Applanix POSpac software; sound velocity was corrected using data from the sound velocity profiler (SVP) with the ray-tracing algorithm; attitude corrections were included in the direct georeferencing process. For the automatic data-cleaning processing, this study combined the quantile filter, multi-resolution M-Estimator, and the Combined Uncertainty and Bathymetry Estimator (CUBE) algorithms to produce digital elevation models as the basis for the final outlier identifications. To ensure the quality of the automatic data-cleaning results, this study marks out the areas requiring manual intervention. Finally, the results of this study are validated by manually processed bathymetric data using CARIS HIPS and SIPS software. The GNSS tide results are used to verify both the correctness of the ellipsoidally referenced depths and the effectiveness of the data-cleaning process from the proposed method. Additionally, the results corrected to the Lowest Astronomical Tide (LAT) with a separation model (SEP) are used to verify the effectiveness of ellipsoidally referenced bathymetry. In terms of GNSS/INS integration solutions, the study results show no significant differences between loosely-coupled and tightly-coupled solutions. Nonetheless, the precision of tightly-coupled solutions is slightly higher than that of loosely-coupled solutions; thus, tightly-coupled solutions were prioritized. In terms of bathymetric data processing, the areas that can be automatically filtered are 95.51%, 99.82%, and 97.34% in Anping, Xing-da, and Wu-shi, respectively. The average differences between the results and the manually processed results using the GNSS tide are -0.007 m for all the three sites, while their average standard deviations of differences range from 0.014 m to 0.166 m. The results indicate that the proposed method provides similar results to those from the GNSS tide. In comparison to CARIS results corrected by tide, constant biases of approximately 0.07 m, 0.25 m, and -0.26 m are found in the three sites. Chances are that they are originated from either the local LAT datum shifts, errors in the elevation of the base stations, or the limits of the vertical positioning accuracy.

    摘要 I ABSTRACT II 誌謝 IV Table of Contents V List of Tables IX List of Figures XI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Structure 7 Chapter 2 Fundamentals 9 2.1 Introduction to GNSS 9 2.1.1 GNSS Positioning 9 2.2 Introduction to INS 12 2.3 GNSS/INS Integration 16 2.3.1 Loosely-coupled 17 2.3.2 Tightly-coupled 20 2.4 Echosounder 23 2.4.1 Single-beam Echosounder (SBES) 24 2.4.2 Multibeam Echosounder (MBES) 24 2.5 Instrument 30 2.5.1 Otter Pro USV 30 2.5.2 NORBIT iWBMS Echosounder 32 2.5.3 Applanix POS MV WaveMaster 34 Chapter 3 Methodology 35 3.1 Workflow of Traditional Bathymetry 35 3.1.1 Patch Test 38 3.1.2 Georeferencing 38 3.1.2.1 Sound Velocity Correction: Ray-tracing 39 3.1.2.2 Installation Error and Attitude Correction 42 3.1.3 Tide Correction 43 3.1.3.1 Chart Datum 44 3.1.3.2 Correction to the Chart Datum 46 3.2 Ellipsoidal Referenced Bathymetry 47 3.3 Study Areas 49 3.4 Flowchart of This Study 51 3.5 Comparison of Integration Schemes 53 3.6 Data Cleaning 54 3.6.1 Quantile Filter 55 3.6.2 Multi-resolution M-Estimator 56 3.6.3 Combined Uncertainty and Bathymetry Estimator (CUBE) 59 3.6.4 Outlier Identification 61 3.7 Validation 62 Chapter 4 Results and Discussion 63 4.1 Bathymetry at An-ping Argo Yacht Port 63 4.1.1 Evaluation of Original Data 63 4.1.1.1 Positioning and Attitude 63 4.1.1.2 Original Point Cloud 66 4.1.2 Evaluation of Data Cleaning Process 67 4.1.2.1 Implementations of Individual Algorithm 67 4.1.2.2 Concatenation of The Algorithms 69 4.1.3 Outlier Identification 74 4.1.4 Validation by Manual Processed Data 78 4.2 Bathymetry at Xing-da Fishery Harbor 83 4.2.1 Evaluation of Original Data 83 4.2.1.1 Positioning and Attitude 83 4.2.1.2 Original Point Cloud 86 4.2.2 Evaluation of Data Cleaning Process 87 4.2.2.1 Implementations of Individual Algorithm 87 4.2.2.2 Concatenation of The Algorithms 89 4.2.3 Outlier Identification 93 4.2.4 Validation by Manual Processed Data 97 4.3 Bathymetry at Wu-shi Yacht Port 103 4.3.1 Evaluation of Original Data 103 4.3.1.1 Positioning and Attitude 103 4.3.1.2 Original Point Cloud 106 4.3.2 Evaluation of Data Cleaning Process 107 4.3.2.1 Implementations of Individual Algorithm 107 4.3.2.2 Concatenation of The Algorithms 109 4.3.3 Outlier identification 113 4.3.4 Validation by Manual Processed Data 117 Chapter 5 Conclusions and Recommendations 123 Reference 126

    Arnold, J., & Shaw, S. (1993). A surface weaving approach to multibeam depth estimation. Proceedings of OCEANS ’93, 2, II/95-II/99. https://doi.org/10.1109/oceans.1993.326073
    Bibuli, M., Bruzzone, G., Caccia, M., Fumagalli, E., Saggini, E., Zereik, E., Buttaro, E., Caporale, C., & Ivaldi, R. (2014). Unmanned Surface Vehicles for automatic bathymetry mapping and shores’ maintenance. OCEANS 2014-TAIPEI, 1–7. https://doi.org/10.1109/oceans-taipei.2014.6964440
    Bishop, G., & Welch, G. (2001). An introduction to the kalman filter. Proc of SIGGRAPH, Course, 8(27599-23175), 41.
    Bisquay, H., Freulon, X., De Fouquet, C., & Lajaunie, C. (1998). Multibeam data cleaning for hydrography using geostatistics. IEEE Oceanic Engineering Society. OCEANS’98. Conference Proceedings (Cat. No. 98CH36259), 2, 1135–1143. https://doi.org/10.1109/oceans.1998.724413
    Bottelier, P., Briese, C., Hennis, N., Lindenbergh, R., & Pfeifer, N. (2005). Distinguishing features from outliers in automatic Kriging-based filtering of MBES data: a comparative study. Geostatistics for Environmental Applications, 403-414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26535-x_34
    Calder, B. R., & Mayer, L. A. (2003). Automatic processing of high‐rate, high‐density multibeam echosounder data. Geochemistry, Geophysics, Geosystems, 4(6). https://doi.org/10.1029/2002gc000486
    Calder, B., & Smith, S. (2004). A time comparison of Computer-Assisted and manual bathymetric processing. The International Hydrographic Review, 5(1), 10–23. https://journals.lib.unb.ca/index.php/ihr/article/view/20644
    Calder, B. R., & Rice, G. (2011). Design and implementation of an extensible variable resolution bathymetric Estimator. U.S. Hydrographic Conference. https://scholars.unh.edu/ccom/841/
    Canepa, G., Bergem, O., & Pace, N. (2003). A new algorithm for automatic processing of bathymetric data. IEEE Journal of Oceanic Engineering, 28(1), 62–77. https://doi.org/10.1109/joe.2002.808204
    Chadwell, C. D., & Sweeney, A. D. (2010). Acoustic Ray-Trace Equations for Seafloor Geodesy. Marine Geodesy, 33(2–3), 164–186. https://doi.org/10.1080/01490419.2010.492283
    Chiang, K.-W. (2004). INS/GPS integration using neural networks for land vehicular navigation applications [Doctoral thesis, University of Calgary]. https://doi.org/10.11575/PRISM/23670
    Debese, N., Moitié, R., & Seube, N. (2012). Multibeam echosounder data cleaning through a hierarchic adaptive and robust local surfacing. Computers & Geosciences, 46, 330–339. https://doi.org/10.1016/j.cageo.2012.01.012
    De Plaa, J., Snellen, M., & Simons, D. G. (2008). Correcting bathymetry measurements for water sound speed effects using inversion theory. The Journal of the Acoustical Society of America, 123, 3352. https://doi.org/10.1121/1.2933917
    DeSanto, J. B., Chadwell, C. D., & Sandwell, D. T. (2019). Kinematic post-processing of ship navigation data using precise point positioning. Journal of Navigation, 72(3), 795–804. https://doi.org/10.1017/s0373463318000887
    Du, Z., Chai, H., Xiao, G., Xiang, M., Yin, X., & Shi, M. (2020). The Realization and Evaluation of PPP Ambiguity Resolution with INS Aiding in Marine Survey. Marine Geodesy, 44(2), 136–156. https://doi.org/10.1080/01490419.2020.1852986
    Falco, G., Pini, M., & Marucco, G. (2017). Loose and tight GNSS/INS Integrations: Comparison of performance assessed in real urban scenarios. Sensors, 17(2), 255. https://doi.org/10.3390/s17020255
    Ferreira, I. O., De Andrade, L. C., Teixeira, V. G., & Santos, F. C. M. (2022). State of art of bathymetric surveys. Boletim De Ciências Geodésicas, 28(1). https://doi.org/10.1590/s1982-21702022000100002
    Ferreira, I. O., De Paula Dos Santos, A., De Oliveira, J. C., Medeiros, N. D. G., & Emiliano, P. C. (2019). Spatial Outliers Detection Algorithm (SODA) applied to multibeam bathymetric data processing. Boletim De Ciências Geodésicas, 25(4). https://doi.org/10.1590/s1982-21702019000400020
    Gao, R., Xu, T., & Ai, Q. (2017). Research on underwater sound velocity calculation, error correction and positioning algorithms. 2017 Forum on Cooperative Positioning and Service (CPGPS), 39–42. https://doi.org/10.1109/cpgps.2017.8075094
    Geng, J., Teferle, F. N., Meng, X., & Dodson, A. H. (2010). Kinematic precise point positioning at remote marine platforms. GPS Solutions, 14(4), 343–350. https://doi.org/10.1007/s10291-009-0157-9
    Geng, X., & Zielinski, A. (1999). Precise multibeam acoustic bathymetry. Marine Geodesy, 22(3), 157–167. https://doi.org/10.1080/014904199273434
    Giordano, F., Mattei, G., Parente, C., Peluso, F., & Santamaria, R. (2015). Integrating sensors into a marine drone for bathymetric 3d surveys in shallow waters. Sensors, 16(1), 41. https://doi.org/10.3390/s16010041
    Hamden, M. H., & Din, A. H. M. (2018, June). A review of advancement of hydrographic surveying towards ellipsoidal referenced surveying technique. In IOP Conference Series: Earth and Environmental Science (Vol. 169, No. 1, p. 012019). IOP Publishing.
    Hou, T., Huff, L. C., & Mayer, L. A. (2001). Automatic detection of outliers in multibeam echo sounding data. In U.S. Hydrographic Conference 2001. Hydrographic Society of America.
    Hovem, J. M. (2013). Ray trace modeling of underwater sound propagation. In Beghi, M. G. (Ed.), modeling and measurement methods for acoustic waves and for acoustic microdevices. https://doi.org/10.5772/55935
    Hoy, S. & Kissinger, K. (2010). Multibeam calibration: conducting a patch test. National Oceanic and Atmospheric Administration.
    Hu, C.-Y. (2009). The utilization of a low cost tightly coupled INS/GPS integrated system for seamless land vehicle navigation [Master’s thesis, National Cheng Kung University]. https://thesis.lib.ncku.edu.tw/thesis/detail/b1673c338a239ef21e7623350c50cdff
    Huang, X., Huang, C., Zhai, G., Lu, X., Xiao, G., Sui, L., & Deng, K. (2020). Data processing method of Multibeam Bathymetry based on sparse weighted LS-SVM machine algorithm. IEEE Journal of Oceanic Engineering, 45(4), 1538–1551. https://doi.org/10.1109/joe.2019.2921429
    Intergovernmental Committee on Surveying and Mapping. (2021). Australian tides manual (Special Publication No. 9 Version 6). https://www.icsm.gov.au/publications/sp9-australian-tides-manual-version-6-june-2021
    International Hydrographic Organization. (2018). Resolutions of International Hydrographic Organization (M-3, 2nd ed., 2010). International Hydrographic Organization.
    International Hydrographic Organization. (2022). IHO Standards for Hydrographic Surveys (6.1.0 ed.). International Hydrographic Organization. https://iho.int/en/standards-and-specifications
    Jin, S., Sun, W., Bao, J., Liu, M., & Yang, C. (2015). Sound Velocity Profile (SVP) inversion through correcting the terrain distortion. The International Hydrographic Review, (13). Retrieved from https://journals.lib.unb.ca/index.php/ihr/article/view/24430
    Kearns, T. A., & Breman, J. (2010). Bathymetry-The art and science of seafloor modeling for modern applications. Ocean globe, 2010, 1-36.
    L-3 Communications SeaBeam Instruments. (2003). Multibeam sonar theory of operation. https://lismap.uconn.edu/wp-content/uploads/sites/2333/2018/11/SeaBeamMultibeamTheoryOperation.pdf, last accessed on 2024/07/17.
    Ladner, R. W., Elmore, P., Perkins, A. L., Bourgeois, B., & Avera, W. (2017). Automated cleaning and uncertainty attribution of archival bathymetry based on a priori knowledge. Marine Geophysical Researches, 38(3), 291–301. https://doi.org/10.1007/s11001-017-9304-9
    Le Deunf, J., Debese, N., Schmitt, T., & Billot, R. (2020). A Review of Data Cleaning Approaches in a Hydrographic Framework with a Focus on Bathymetric Multibeam Echosounder Datasets. Geosciences, 10(7), 254. https://doi.org/10.3390/geosciences10070254
    Lee, C-. F. & Wang, C-. G. (2022). Tide correction methods for bathymetry survey. Taiwan Journal of Geoinformatics, 10(1), 65-76.
    Li, G., Liu, Y., Shen, K., He, G., & Li, J. (2010). Research on the determination and algorithm of chart datum. In 2010 The 2nd Conference on Environmental Science and Information Application Technology. IEEE. https://doi.org/10.1109/esiat.2010.5568884
    Ligteringen, T., Loog, J., & Dorst, L. (2014). GNSS Based Hydrographic Surveying: clear advantages and hidden obstacles. 2014 GNSS Based Hydrographic Conference.
    Liu, Z., Zhang, Y., Yu, X., & Yuan, C. (2016). Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, 41, 71–93. https://doi.org/10.1016/j.arcontrol.2016.04.018
    Lu, D., Li, H., Wei, Y., & Zhou, T. (2010). Automatic outlier detection in multibeam bathymetric data using robust LTS estimation. 2010 3rd International Congress on Image and Signal Processing, 4032–4036. https://doi.org/10.1109/cisp.2010.5648184
    Lyu, J-. S., Hwang, C-. W., Lan, W-. H., Wang, C-. G., Kuo, C-. Y. (2022). Establishment of vertical datum transformation model for Taiwan. Taiwan Journal of Geoinformatics, 10(1), 37 – 64.
    Makar, A. (2019). Algorithms for cleaning the data recorded by Multibeam Echosounder. GEOLINKS 2019 Conference Proceedings Book 3, 1, 257–264. https://doi.org/10.32008/geolinks2019/b3/v1/29
    Mann, M., Agathoklis, P., & Antoniou, A. (2001). Automatic outlier detection in multibeam data using median filtering. 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233), 2, 690–693. https://doi.org/10.1109/pacrim.2001.953726
    Mills, J., Dodd, D. (2014). Ellipsoidally referenced surveying for hydrography. International Federation of Surveyors (FIG), FIG publication 62. https://www.fig.net/resources/publications/figpub/pub62/Figpub62.pdf, last accessed on 2024/05/31.
    Ministry of the Interior. (2022). 水深測量作業規範 (Regulations of Bathymetric Surveys).
    Moore, T., Hill, C., Norris, A., Hide, C., Park, D., & Ward, N. (2008). The potential impact of GNSS/INS integration on maritime navigation. Journal of Navigation, 61(2), 221–237. https://doi.org/10.1017/s0373463307004614
    Motao, H., Guojun, Z., Rui, W., Yongzhong, O., & Zheng, G. (1999). Robust method for the detection of abnormal data in hydrography. The International Hydrographic Review, LXXVI(2). https://journals.lib.unb.ca/index.php/ihr/article/download/22940/26637
    National Ocean Service. (2001). Tidal datums and their applications (NOAA Special Publication NOS CO-OPS 1). U.S. Department of Commerce, National Oceanic and Atmospheric Administration. https://tidesandcurrents.noaa.gov/publications/tidal_datums_and_their_applications.pdf
    National Oceanic and Atmospheric Administration. (2022). Hydrographic surveys specifications and deliverables. U.S. Department of Commerce.
    O’Reilly, C., Parsons, S., & Langelier, D. (1997). A Universal Seamless Vertical Reference Surface for Hydrographic Bathymetry with Specific Application to Seismic Areas. In Gravity, Geoid and Marine Geodesy: International Symposium No. 117 Tokyo, Japan, September 30–October 5, 1996 (pp. 736-743). Springer Berlin Heidelberg.
    Parker, B. (2018). Tides. In Encyclopedia of earth sciences series/Encyclopedia of earth sciences (pp. 1–16). https://doi.org/10.1007/978-3-319-48657-4_324-2
    Petovello, M. G. (2003). Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation. https://doi.org/10.11575/prism/23031
    Rowley, J. (2018, October). Autonomous unmanned surface vehicles (usv): A paradigm shift for harbor security and underwater bathymetric imaging. OCEANS 2018 MTS/IEEE Charleston , 1-6. IEEE. https://doi.org/10.1109/oceans.2018.8604611
    Schmidt, G. T., & Phillips, R. E. (2010). INS/GPS Integration Architectures. Defense Technical Information Center. https://apps.dtic.mil/dtic/tr/fulltext/u2/a581020.pdf
    Schmidt, G. T., & Phillips, R. E. (2011). INS/GPS Integration architecture performance Comparisons (RTO-EN-SET-116(2011)). NATO Science and Technology Organization.
    Schureman, P. (1958). Manual of Harmonic Analysis and Prediction of Tides (Revised 1940 edition reprinted 1958 with corrections, reprinted 2001). United States Government Printing Office. https://doi.org/10.25607/obp-155
    Sedaghat, L., Hersey, J., & McGuire, M. P. (2013). Detecting spatio-temporal outliers in crowdsourced bathymetry data. Proceedings of the Second ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, 55–62. https://doi.org/10.1145/2534732.2534739
    Seto, M., & Crawford, A. (2015). Autonomous shallow water bathymetric measurements for environmental assessment and safe navigation using USVs. OCEANS 2015-MTS/IEEE Washington, 1–5. https://doi.org/10.23919/oceans.2015.7404407
    Shih, T. -Y., Shyue, S. -W. (2022). The Realization of Height Modernization in Hydrographic Surveying. Taiwan Journal of Geoinformatics, 10(1), 21-36.
    Shyue, S. -w., Lin, J. -W. (2015). Study on the ellipsoidally referenced bathymetric survey. Proceedings of the 37th Ocean Engineering Conference in Taiwan, 529-534.
    Šiljeg, A., Marić, I., Domazetović, F., Cukrov, N., Lovrić, M., & Panđa, L. (2022). Bathymetric survey of the St. Anthony Channel (Croatia) using multibeam echosounders (MBES)—a new methodological semi-automatic approach of point cloud post-processing. Journal of Marine Science and Engineering, 10(1), 101. https://doi.org/10.3390/jmse10010101
    Skaloud, J. (1999). Optimizing georeferencing of airborne survey systems by INS/DGPS. https://doi.org/10.11575/prism/11133
    Specht, M., Specht, C., Lasota, H., & Cywiński, P. (2019). Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-Cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot. Sensors, 19(18), 3939. https://doi.org/10.3390/s19183939
    Specht, M., Specht, C., Szafran, M., Makar, A., Dąbrowski, P., Lasota, H., & Cywiński, P. (2020). The use of USV to develop navigational and bathymetric charts of yacht ports on the example of National Sailing Centre in Gdańsk. Remote Sensing, 12(16), 2585. https://doi.org/10.3390/rs12162585
    Stateczny, A., Specht, C., Specht, M., Brčić, D., Jugović, A., Widźgowski, S., Wiśniewska, M., & Lewicka, O. (2021). Study on the positioning accuracy of GNSS/INS systems supported by DGPS and RTK receivers for hydrographic surveys. Energies, 14(21), 7413. https://doi.org/10.3390/en14217413
    Stephens, D., Smith, A., Redfern, T., Talbot, A., Lessnoff, A., & Dempsey, K. (2020). Using three dimensional convolutional neural networks for denoising echosounder point cloud data. Applied Computing and Geosciences, 5, 100016. https://doi.org/10.1016/j.acags.2019.100016
    Sun, D., Li, H., Zheng, C., & Li, X. (2019). Sound velocity correction based on effective sound velocity for underwater acoustic positioning systems. Applied Acoustics, 151, 55–62. https://doi.org/10.1016/j.apacoust.2019.02.027
    Teunissen, P. J., & Montenbruck, O. (2017). Springer Handbook of Global Navigation Satellite Systems. In Springer eBooks. https://doi.org/10.1007/978-3-319-42928-1
    Ware, C., Slipp, L., Wong, K. W., Nickerson, B., Wells, D., Lee, Y. C., Dodd, D., & Costello, G. (1992). A system for cleaning high volume bathymetry. The International Hydrographic Review, 69(2). https://journals.lib.unb.ca/index.php/ihr/article/download/26179/1882518871
    Wells, D., A. Kleusberg, & P. Vanfcek (1996). A Seamless Vertical-Reference Surface for Acquisition, Management and Display of ECDIS Hydrographic Data. Final contract report for the Canadian Hydrographic Service, Department of Geodesy and Geomatics Engineering Technical Report No. 179, University of New Brunswick, Fredericton, New Brunswick, Canada, 64 pp.
    Xu, W., & Ma, K. (2018, February). Technology of Sound Velocity Correction for Multi-beam Bathymetry Sounding. In 2018 International Conference on Computer Science, Electronics and Communication Engineering (CSECE 2018) (pp. 269-273). Atlantis Press.
    Yang, F., Li, J., Chu, F., & Wu, Z. (2007). Automatic detecting outliers in multibeam sonar based on density of points. OCEANS 2007 – Europe, 1-4. https://doi.org/10.1109/oceanse.2007.4302202
    Yeh, Y.-H. (2013). Analyzing the performance of tightly coupled INS/GNSS via post-processed virtual reference station technique [Master’s thesis, National Cheng Kung University]. https://ncku.primo.exlibrisgroup.com/permalink/886NCKU_INST/1k0eqr5/alma991020011059707978

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE