| 研究生: |
陳彥安 Chen, Yen-An |
|---|---|
| 論文名稱: |
基於GAI之知識整合行銷支援模式設計與技術開發 Design and Development of GAI-Based Knowledge Integration Marketing Support Model and Technology |
| 指導教授: |
陳裕民
Chen, Yu-Ming |
| 共同指導教授: |
Hsu, MaxWell K.
Hsu, Maxwell K. 陳育仁 Chen, Yuh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 行銷決策支援 、大型語言模型 、檢索增強生成 、知識圖譜 |
| 外文關鍵詞: | Marketing Decision Support, Large Language Models, Retrieval-Augmented Generation, Knowledge Graph |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著市場競爭日趨激烈,行銷決策的品質直接影響企業的市場表現和財務績效。然而,中小企業在行銷管理方面普遍面臨專業人才不足、資源有限以及行銷經驗難以系統化累積等挑戰。傳統的行銷決策過程高度依賴個人經驗與直覺判斷,缺乏標準化流程和知識管理機制,導致決策品質不穩定且知識傳承困難。
本研究提出整合式行銷決策支援模式,旨在透過大型語言模型技術與企業私有資料的整合,為中小企業建立客觀、一致且全面的行銷決策支援系統。研究首先設計OOPDCA (Observation-Objective-Plan-Do-Check-Assessment-Analysis-Action) 行銷活動循環框架,將傳統PDCA (Plan-Do-Check-Act) 循環擴展為八階段的完整循環系統。同時,提出三層次行銷決策支援模式,包括行銷細節支援、OOPDCA樣板產生和OOPDCA決策支援,針對不同層級的決策需求提供差異化支援。
在技術實現方面,本研究採用檢索增強生成(RAG)技術開發行銷數位分身平台,使用LightRAG框架結合知識圖譜與向量表示。透過文件元素分析、圖片描述提取和元素整合等技術,將圖表資料轉化為結構知識庫。系統能夠理解企業特定的行銷環境,提供客製化決策建議,並具備多模態資料處理能力。
實驗結果顯示,行銷數位分身成功實現三層次決策支援功能,能夠有效理解和運用企業私有知識,提供專業且相關的行銷建議。本研究不僅為中小企業提供實用的行銷決策支援工具,也為大型語言模型在企業專業領域的應用提供參考,對促進企業數位轉型和提升行銷效率具有重要意義。
Small and medium-sized enterprises (SMEs) face challenges in marketing decision-making, including insufficient professional talent, limited resources, and difficulties in experience transfer. Traditional decision-making processes rely on personal experience and lack standardized procedures. This study develops an intelligent marketing decision support model that integrates large language models with enterprise private data to establish an objective and consistent decision support system.
The research proposes an eight-stage OOPDCA marketing cycle framework and a three-tier decision support model (marketing detail support, template generation, and decision support). Technically, a Marketing Digital Twin platform is developed using RAG architecture with the LightRAG framework to process multimodal enterprise data, transforming text and charts into structured knowledge bases.
Experimental validation demonstrates that the system successfully achieves three-tier decision support and effectively utilizes enterprise private knowledge to provide professional recommendations. This study provides practical decision-making tools for SMEs and holds significant importance for enterprise digital transformation and marketing efficiency enhancement.
Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with applications, 2, 100006.
Alharbi, G. L., & Aloud, M. E. (2024). The effects of knowledge management processes on service sector performance: evidence from Saudi Arabia. Humanities and Social Sciences Communications, 11(1), 1-19.
Balducci, B., & Marinova, D. (2018). Unstructured data in marketing. Journal of the Academy of Marketing Science, 46, 557-590.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
Cillo, P., & Rubera, G. (2024). Generative AI in innovation and marketing processes: A roadmap of research opportunities. Journal of the Academy of Marketing Science, 1-18.
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
Darroch, J. (2005). Knowledge management, innovation and firm performance. Journal of Knowledge Management, 9(3), 101-115.
Deming, W. E. (2018). Out of the Crisis, reissue. MIT press.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186).
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International journal of Information Management, 48, 63-71.
Ghobakhloo, M., & Ching, N. T. (2019). Adoption of digital technologies of smart manufacturing in SMEs. Journal of Industrial Information Integration, 16, 100107.
Ghobakhloo, M., & Iranmanesh, M. (2021). Digital transformation success under Industry 4.0: a strategic guideline for manufacturing SMEs. Journal of Manufacturing Technology Management, 32(8), 1533-1556.
Gilmore, A., Carson, D., & Grant, K. (2001). SME marketing in practice. Marketing intelligence & planning, 19(1), 6-11.
Grieves, M., & Vickers, J. (2016). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary perspectives on complex systems: New findings and approaches (pp. 85-113). Cham: Springer International Publishing.
Guo, Z., Xia, L., Yu, Y., Ao, T., & Huang, C. (2024). Lightrag: Simple and fast retrieval-augmented generation.
Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2022). Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research, 308(1), 215-274.
Handler, A., Larsen, K. R., & Hackathorn, R. (2024). Large language models present new questions for decision support. International Journal of Information Management, 79, 102811.
Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30-50.
Katsikeas, C. S., Morgan, N. A., Leonidou, L. C., & Hult, G. T. M. (2016). Assessing performance outcomes in marketing. Journal of Marketing, 80(2), 1-20.
Kassa, E. T., & Ning, J. (2025). A systematic literature review on the nexus of knowledge management and innovation. Global Knowledge, Memory and Communication.
Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263-267.
Kotler, P., Keller, K. L., Brady, M., Goodman, M., & Hansen, T. (2016). Marketing Management 3rd edn PDF eBook. Pearson Higher Ed.
Kumar, V., & Reinartz, W. (2016). Creating enduring customer value. Journal of marketing, 80(6), 36-68.
Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, 102716.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33, 9459-9474.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
Malthouse, E. C., & Li, H. (2017). Opportunities for and pitfalls of using big data in advertising research. Journal of Advertising, 46(2), 227-235.
Martínez, A., Schmuck, C., Pereverzyev Jr, S., Pirker, C., & Haltmeier, M. (2020). A machine learning framework for customer purchase prediction in the non-contractual setting. European Journal of Operational Research, 281(3), 588-596.
Moen, R., & Norman, C. (2006, May). Evolution of the PDCA cycle.
Morgan, N. A. (2012). Marketing and business performance. Journal of the Academy of Marketing Science, 40, 102-119.
Mustak, M., Salminen, J., Plé, L., & Wirtz, J. (2021). Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda. Journal of Business Research, 124, 389-404.
O'Dwyer, M., Gilmore, A., & Carson, D. (2009). Innovative marketing in SMEs: an empirical study. Journal of Strategic Marketing, 17(5), 383-396.
Phillips‐Wren, G. (2013). Intelligent decision support systems. Multicriteria decision aid and artificial intelligence: links, theory and applications, 25-44.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
Rust, R. T., Lemon, K. N., & Zeithaml, V. A. (2004). Return on marketing: Using customer equity to focus marketing strategy. Journal of Marketing, 68(1), 109-127.
Rust, R. T., Ambler, T., Carpenter, G. S., Kumar, V., & Srivastava, R. K. (2004). Measuring marketing productivity: Current knowledge and future directions. Journal of marketing, 68(4), 76-89.
Salminen, J., Yoganathan, V., Corporan, J., Jansen, B. J., & Jung, S. G. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research, 101, 203-217.
Siam, S. I., Ahn, H., Liu, L., Alam, S., Shen, H., Cao, Z., ... & Zhang, M. (2025). Artificial intelligence of things: A survey. ACM Transactions on Sensor Networks, 21(1), 1-75.
Stokes, D. (2000). Putting entrepreneurship into marketing: the processes of entrepreneurial marketing. Journal of Research in Marketing and Entrepreneurship, 2(1), 1-16.
Troilo, G. (2006). Marketing Knowledge Management: Managing Knowledge in Market Oriented Companies. Edward Elgar Publishing.
Tseng, S. M. (2016). Knowledge management capability, customer relationship management, and service quality. Journal of Enterprise Information Management, 29(2), 202-221.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121.