| 研究生: |
楊尉廷 Yang, Wei-ting |
|---|---|
| 論文名稱: |
開發模擬肩關節鬆動術之機器手臂控制系統 Develop A Robotic Manipulator Control System for Simulating Shoulder Joint Mobilization technique |
| 指導教授: |
張冠諒
Chang, Guan-liang 徐阿田 Hsu, Ar-Tyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 機器手臂 、關節鬆動術 |
| 外文關鍵詞: | Translational mobilization technique, Robotic manipulator |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關節鬆動術是骨科物理治療中常用的手法,用來治療關節活動度受限或夾擠症候群的患者,此治療術於臨床的測量時,常因為物理治療師施行的方法不同或測試者不同,導致變異性過大,量化的數據可信賴度低落。由於機器手臂的動作具有可重複性、精確度高、可塑性高的優點,因此開發一套機器手臂系統,模擬物理治療師的角色執行關節鬆動術,以降低臨床研究時量測數據的變異性。目前機械手臂硬體已經完成,但是缺乏適合的控制軟體,導致功能無法完全發揮,因此本研究的目的,是要開發一套機械手臂的軟體控制系統,讓機械手臂可以使用肩關節試體來模擬肩關節鬆動術,我們以現有硬體架構為基礎,做小幅度的硬體修改,接著以Visaul C++ 為開發工具,重新撰寫軟體控制系統。這套軟體整合了馬達控制、位置與角度測量、力量與力矩感測、檔案儲存、軌跡計算、手動學習,直覺化的視窗介面,不但易懂且方便操作,能夠進行肩關節的外展與內收、內轉與外轉、背向與腹向鬆動術。同時,使用機械式的球形關節模擬肩關節的外展與內收,對機械手臂的準確度與可重複能力做驗證。此軟體控制系統已大致開發完成,但在程式撰寫技術以及力量回饋的演算上尚有進步空間,未來將在這兩方面做改進。
Mobilization techniques are used frequently by physical therapists, osteopaths and orthopedic surgeons for treating joints with limited range of motion and impingement syndrome. However, because each physical therapist executes mobilization techniques with different way and each subject has different condition, the variability of clinical measurement data is usually large. The motion of robotic arm is repeatable and accurate. Therefore, our laboratory developed a robotic manipulator for simulating shoulder joint mobilization technique to decrease the variability of clinical measurement. The physical construction of robotic manipulator has been completed, but it lacked of proper software control system. The purpose of this study is to develop a software control system in Visual C++ 6.0 for this robotic manipulator with the primary objective of replacing physical therapist to execute shoulder joint assessment and mobilization technique in cadaver shoulder specimens.
The control system integrated motor control, position and angle measurement, force and torque acquisition, data saving, and trajectory calculating. With the intuitive window interface, it is easy to understand and use. The robotic manipulator can execute abduction and adduction, internal rotation and external rotation, dorsal and ventral translational mobilization. The functions of repeatability and accuracy are validated by using a ball-and-socket joint. Future effort will be devoted to the development of a force feedback control system and to restructure the control software based on a multithread platform.
[1] Camarillo DB, Krummel TM, Salisbury JK, Jr. Robotic technology in surgery: past, present, and future. The American Lournal of Surgery 2004;188:2S-15S.
[2] Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute
positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed
Eng 1988;35(2):153-160.
[3] Drake JM, Joy M, Goldenberg A, Kreindler D. Computer- and robot-assisted
resection of thalamic astrocytomas in children. Neurosurgery 1991;29:27-33.
[4] Davies BL, Hibberd RD, Ng WS, Timoney AG, Wickham JE. The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng [H] 1991;205(1):35-38.
[5] Matsen FA. III, Garbini JL, Slidles JA, Pratt B, Baumgarten D, Kaiura R. Robotic
assistance in orthopaedic surgery: a proof of principle using distal femoral arthroplasty. Clin Orthop 1993;296:178-186.
[6] Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1995;1(4):242-248.
[7] Chan AC, Chung SC, Yim AP, Lau JY, Ng EK, Li AK. Comparison of two- dimensional vs three-dimensional camera system in laparoscopic surgery. Surg Endosc 1997;11(5):438-440.
[8] Hanna GB, Shimi SM, Cuschieri A. Randomised study of influence of two- dimensional versus three-dimensional imaging on performance of laparoscopic cholecystectomy. Lancet 1998;351:248-251.
[9] Muller W, Bockholt U, Voss G., Lahmer A, Börner M. Planning system for computer assisted total knee replacement. Stud Health Technol Inform 2000;70:214-219.
[10]Bargar WL, Bauer A, Borner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop 1998;354:82-91.
[11]Stoianovici D. Robotic surgery. World J Urol 2000;18:289- 295.
[12]Jakopec M, Harris SJ, Rodriguez y Baena F, Eng. M, Gomes P, Cobb J, Davies BL. The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg 2001;6(6):329-339.
[13]Boehm DH, Reichenspurner H, Gulbins H, Gulbins H, Detter C, Meiser B, Brenner P, Habazettl H, Reichart B. Early experience with robotic technology for coronary artery surgery. Ann Thorac Surg 1999;68:1542-1546.
[14]Mohr FW, Falk V, Diegeler A. Computer-enhanced coronary artery bypass surgery. J Thorac Cardiovasc Surg 1999;117:1212-1214.
[15]Himpens J, Leman G, Cadiere GB. Telesurgical laparoscopic cholecystectomy. Surg Endose 1998;12(8):1091.
[16]Marescaux J, Smith M, Folscher D, Jamali F, Malassagne B, Leroy J. Telerobotic laparoscopic cholecystectomy: initial experience with 25 patients. Ann Surg 2001;234(1):1-7.
[17]Tewari A, Peabody J, Sarle R, Balakrishnan G, Hemal A, Shrivastava A, Menon M. Technique of da Vinci robot-assisted anatomic radical prostatectomy. Urology 2002;60:569-72.
[18]Wisselink W, Cuesta MA, Gracia C, Raiwerda JA. Robot-assisted laparoscopic aortobifemoral bypass for aortoiliac occlusive disease: a report of two case. J Vasc Surg 2002;36:1079-1082.
[19]Ansar A, Rodrigues D, Desai JP, Daniilidis K, Kumar V, Campos MF. Visual and haptic collaborative tele-presence. Computers & Graphics 2001;25(5):789-798.
[20]Preusche C, Ortmaier T, Hirzinger G. Tele-operation concepts in minimal invasive surgery. Control Engineering Practice 2002;10:1245-1250.
[21]Suzukia S, Suzukia N, Hayashibea M, Hattoria A, Konishid K, Kakejic Y, Hashizumeb M. Tele-surgery simulation to perform surgical training of abdominal da Vinci surgery. International Congress Series 2005;1281:531-536.
[22]Fujie H, Mabuchi K. The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng 1993;115(8):211-217.
[23]Rudy TW, Livesay GA, Woo SL. A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 1996;29:1357- 1360.
[24]Woo SL, Debski RE, Wong EK, Yagi M, Tarinelli D. Use of robotic technology for diarthrodial joint research. J Sci Med Spor 1999;2(4):283- 297.
[25]Lianfang Tian. An intelligent control method based on fuzzy logic for a robotic testing system for the human spine. J biomech Eng 2005;127:807-812.
[26]Krzysztof P. Jankowski, Hoda A. E1Maraghy. Robust hybrid position / force control of redundant robots. Robotics and Autonomous Systems 1999;27:111-127.
[27]Bojan Nemec, Leon Zlajpah. Force control of redundant robots in unstructured environment. IEEE Transactions on Industrial Electronics 2002;49(1):233-240.
[28]Cheaha CC, Kawamura S, Arimoto S. Stability of hybrid position and force control for robotic manipulator with kinematics and dynamics uncertainties. Automatica 2003;39: 847-855.
[29]Huang L, Ge SS, Lee TH. Fuzzy unidirectional force control of constrained robotic manipulators. Fuzzy Sets and Systems 2003;134:135-146.
[30]Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Transactions on Neural System and Rehabilitation Engineering 2005;12(4):468-472.
[31]Nordin M, Frankel VH. Basic biomechanics of the musculoskeleton system, 3rd Edition. Lippincott Williams and Willkins,Inc. 2001.
[32]Kaltenborn F. Manual mobilization of the extremity joint. Oslo:Olaf Norlis Bokhandel;1989.
[33]McClure PW, Flower KR. Treatment of limited shoulder motion: a case study based on biomechanical considerations. Phy Ther 1992;72;929-936.
[34]Conroy DE, Hayes KW. The effect of joint mobilization as a component of comprehensive treatment for primary shoulder impingement syndrome. J Orthop Sports Phys Ther 1998;28:3-14.
[35]Ekelund AL, Rydell N. Combination of treatment for adhesive capsulitis of the shoulder. Clin Orthop 1992;282:105-109.
[36]Edmond SL. Manipulation mobilization: extremity and spinal techniques. Mosby: St.Louis,1993.
[37]Hurtling D, Kesller RM. Management of common musculoskeletal disoreders- physical. Therapy Principles and Methods, 3rd edition. Philadelphia:Lippincott: 1996.
[38]Threlkeld AJ. The effects of manual therapy on connective tissue. Phys Ther 1992; 72:893-902.
[39]Simmonds MJ, Kumar S, Lechelt E. Use of a spinal model to quantity the forces and motion that occur during therapists’ tests of spinal motion. Phy Ther 1995;75: 212-222.
[40]Hsu AT, Ho L, Ho S, Hedman T. Joint position during anterior-posterior glide mobilization: its effect on glenohumeral abduction range of motion. Arch Phys Med Rehabil 2000;81(2):210-214.
[41]Hsu AT, Ho L, Ho S, Hedman T. Immediate response of glenohumeral abduction range of motion to a caudally directed translational mobilization: A fresh cadaver simulation. Arch Phys Med Rehabil 2000;81(11):1511-1515.
[42]Hsu AT, Ho L, Chang JH, Chang GL, Hedman T. Characterization of tissue resistance during a dorsally directed translational mobilization of the gleno- humeral joint. Arch Phys Med Rehabil 2002;83(3):360-366.
[43]Hsu AT, Hedman T, Chang JH, Vo C, Ho L, Ho S, Chang GL. Changes in abduction and rotation range of motion in response to simulated dorsal and ventral translational mobilization of the glenohumeral joint. Phys Ther 2002;82(6): 544-556.
[44]Hsu AT, Chang JH. Determining the resting position of the glenohumeral joint: A cadaver study. J Orthop Phys Ther 2002;32(12):605-612.
[45]Allen CR, Livesay GA, Wong EK, Woo SL. Injury and reconstruction of the anterior cruciate ligament and knee osteoarthritis. OARSI 1999;7:110-121.
[46]Debski RE, Sakane M, Woo SL. Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. J shoulder Elbow Surg 1999;8(4):324-329.
[47]Christof Hurschler, Nikolaus Wülker, Henning Windhagen, Piet Plumhoff, Niels Hellmers. Medially based anterior capsular shift of glenohumeral joint: passive range of motion and posterior capsular strain. Am J Sports Med 2001;29(3):346- 353.
[48]Lin SW. Design and develop a robotic manipulator for simulating translational mobilization technique. Nation Cheng Kung University, Master Thesis 2003.
[49]Pierrot F, Dombre E, Dégoulange E, Urbain L, Caron P, Boudet S, Gariépy J, Mégnien JL. Hippocrate: a safe robot arm for medical application with force feedback. Medical Image Analysis 1999;3(3):285-300.
[50]Davies B.L. Safety of medical robots. Proc.6th ICAR,Tokyo 1993;311-317
[51]http://prime.jsc.nasa.gov/ROV/types.html 2007.6
[52]Denavit J & Hartenberg RS. A kinematic notation for lower-pair mechanisms based on matrices. J App Mech 1955;77:215-221.
[53]Asada H & Slotine JE. Robot analysis and control. John Wiley & sons,Inc. 1986.
[54]Pieper DL. The kinematics of manipulators under computer control. Doctoral Dissertation, Stanford University 1968.
[55]Mavroidis C, Dubowsky S, Drouet P, Hintersteiner J, Flanz J. A systematic error anlysis of robotic manipulators: Application to a high performance medical robot.
International Conference in Robotics and Automation, Albuquerque, NM, April, 1997.