| 研究生: |
阮泰鈞 Juan, Tai-Chun |
|---|---|
| 論文名稱: |
合成孔徑雷達影像Sentinel-1偵測地形圖異動區 Sentinel-1 SAR Images for Detecting the Change Areas in Topographic Maps |
| 指導教授: |
蔡展榮
Tsay, Jaan-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 數值地形圖修測 、合成孔徑雷達 、變遷偵測 |
| 外文關鍵詞: | Digital topographic map updating, Synthetic aperture radar, Change detection |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討Sentinel-1偵測數值地形圖異動區的能力,以2015年、2019、2020年與2021年Sentinel-1大台北地區作為實驗區,產製差異影像進行變遷偵測,並以Sentinel-2、Google街景與新北市1/1000數值地形圖修測成果作為驗證資料,確認Sentinel-1具備變遷偵測能力,並採用3個指標:分類準確度、精密度、kappa係數來量化變遷偵測的成果。
地形圖修測作業中位置資訊是重要因子,實驗中量測地理對位後Sentinel-1影像中10個控制點TWD97坐標,並與農航所提供的正射影像中同名點坐標進行比較,得到平均較差為13.9公尺,以Sentinel-1地元尺寸換算,相當於1像元左右的誤差。另外模擬在無DEM輔助地理對位的情況下,嘗試以仿射轉換配合10個控制點進行地理對位,整體精度最高可達±7.6公尺(約0.58個像元)。
透過兩時期雷達影像相減所計算的差異影像是本研究用作變遷偵測的方式設定不同門檻值於差異影像,歸納得到差異影像中設定以分貝差8以上 (|∆dB|>8)為門檻,能有好的異動區分辨能力,進一步地提出人造建物雷達強度作為附加判斷條件,試圖從變遷區域中分辨人造建物。
最後,Sentinel-1雷達影像偵測的異動區域與新北市數值地形圖中永久房屋異動區套疊,在無附加條件與有附加條件下,分別得到79.8%與90.7%的總體準確率;正確判別永久性房屋異動的精密度分別為10.0%與8.5%;kappa係數分別為0.057和0.026。整體研究成果得到Sentinel-1雷達差異影像存在大面積異動區的偵測能力,可作為異動區偵測的補充資料,但對於小區域及微小的變化仍容易誤判。
The capability of using Sentinel-1 at finding the topographic data change part is discussed in this thesis. Fore sentinel-1 images sensed at 2015, 2019, 2020 and 2021 are chosen as experimental data. Sentinel-2, Google street map and digital topographic map are used as reference data to validate the correctness of change detection.
Because the correctness of location is an important factor when finding the change area, 10 control points measured from Sentinel-1 image are compared with the corresponding points in orthophoto to evaluate the precision. The average difference is 13.9 meters. In addition, the simulation of terrain correction without DEM is also discussed. Affine transform is applied with same control points to simulate terrain correction. The best overall precision can reach ±7.6 meters(about 0.58 pixel).
Difference image calculated by two SAR image subtraction is the way to detect the change area in this study. By testing several thresholds, the result concludes that the threshold which set bigger than 8 decibel provides good distinction to classify change and non-change part. Moreover, the additional condition based on radar intensity is also demonstrated to improve buildings from change detection.
At the end, Sentinel-1 change area overlays with the digital topographic map to analyze the detection of permanent buildings change. Calculate the overlapping area of change detection result and digitalized ground truth. Without additional condition, the overall accuracy of change detection is 79.8%. The precision is 8.5%, and kappa coefficient is 0.026. With additional condition, the overall accuracy of change detection reaches 90.7%. The precision is 10.0%, and kappa coefficient is 0.057. This research shows that Sentinel-1 can be used to detect the big change area in digital topographic map, but the small change area and the detail cannot be found.
Abdikan, S., Sanli, F. B., Ustuner, M., & Calò, F. (2016). Land cover mapping using sentinel-1 SAR data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 757-761.
Bazi, Y., Bruzzone, L., & Melgani, F. (2005). An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 874-887.
Bolter, R., & Leberl, F. (2000). Detection and reconstruction of human scale features from high resolution interferometric SAR data. Paper presented at the Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
Bourbigot, M., Johnsen, H., Piantanida, R., Hajduch, G., & Poullaouec, J. (2016). Sentinel-1 Product Definition (Document Number: S1-RS-MDA-52-7440). Retrieved from https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition
Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., El Hajj, M., Gao, Q., & Mougenot, B. (2017). Potential of Sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors, 17(11), 2617.
Brisco, B., Touzi, R., van der Sanden, J. J., Charbonneau, F., Pultz, T., & D'Iorio, M. (2008). Water resource applications with RADARSAT-2–a preview. International Journal of Digital Earth, 1(1), 130-147.
Brunner, D., Lemoine, G., Bruzzone, L., & Greidanus, H. (2010). Building height retrieval from VHR SAR imagery based on an iterative simulation and matching technique. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1487-1504.
Copernicus Open Access Hub. (2021) Retrieved 3 December 2020. from https://scihub.copernicus.eu/dhus/#/home.
Clement, M. A., Kilsby, C., & Moore, P. (2018). Multi‐temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152-168.
Dekker, R. J. (2003). Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherlands. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1950-1958.
Dierking, W., & Skriver, H. (2002). Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 40(3), 618-636.
Dobson, M. C., Pierce, L. E., & Ulaby, F. T. (1996). Knowledge-based land-cover classification using ERS-1/JERS-1 SAR composites. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 83-99.
Doornbos, E., & Scharroo, R. (2005). Improved ERS and Envisat precise orbit determination. Paper presented at the Proc. of the 2004 Envisat & ERS Symposium.
Evans, D. L., Farr, T. G., Van Zyl, J. J., & Zebker, H. A. (1988). Radar polarimetry: Analysis tools and applications. IEEE Transactions on Geoscience and Remote Sensing, 26(6), 774-789.
Ferrazzoli, P., Guerriero, L., & Schiavon, G. (1999). Experimental and model investigation on radar classification capability. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 960-968.
Ferro, A., Brunner, D., & Bruzzone, L. (2012). Automatic detection and reconstruction of building radar footprints from single VHR SAR images. IEEE Transactions on Geoscience and Remote Sensing, 51(2), 935-952.
Fialko, Y., Simons, M., & Agnew, D. (2001). The complete (3‐D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations. Geophysical Research Letters, 28(16), 3063-3066.
Fieuzal, R., Baup, F., & Marais-Sicre, C. (2013). Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—From temporal signatures to crop parameters estimation. Advances in Remote Sensing, 2(2), 162-180.
Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630.
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191.
Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J.-P., Bates, P. D., & Mason, D. C. (2012). A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2417-2430.
Goldstein, R. M., Zebker, H. A., & Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio science, 23(4), 713-720.
Gong, M., Yang, H., & Zhang, P. (2017). Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 212-225.
Hajj, M. E., Baghdadi, N., Belaud, G., Zribi, M., Cheviron, B., Courault, D., Hagolle, O., & Charron, F. (2014). Irrigated grassland monitoring using a time series of terraSAR-X and COSMO-skyMed X-Band SAR Data. Remote Sensing, 6(10), 10002-10032.
Hajj, M. E., Baghdadi, N., Zribi, M., & Angelliaume, S. (2016). Analysis of Sentinel-1 radiometric stability and quality for land surface applications. Remote Sensing, 8(5), 406.
Holland, D., & Marshall, P. (2004). Updating maps in a well-mapped country using high resolution satellite imagery. Paper presented at the XX. Congress of International Society for Photogrammetry and Remote Sensing (ISPRS), Commission II, Working Group II/6. 2004. IAPRS, Vol. XXXV-B2, 747-751
Holland, Boyd, D., & Marshall, P. (2006). Updating topographic mapping in Great Britain using imagery from high-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3), 212-223.
James, R. J. (1989). A history of radar. IEE Review, 35(9), 343-349.
Lapini, A., Pettinato, S., Santi, E., Paloscia, S., Fontanelli, G., & Garzelli, A. (2020). Comparison of Machine Learning Methods Applied to SAR Images for Forest Classification in Mediterranean Areas. Remote Sensing, 12(3), 369.
Li, Y., Peng, C., Chen, Y., Jiao, L., Zhou, L., & Shang, R. (2019). A deep learning method for change detection in synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 57(8), 5751-5763.
Liu, Z., Chen, H., Liu, T., Li, P., Dai, J., Sun, X., & Liu, S. (2010). Double-image encryption based on the affine transform and the gyrator transform. Journal of optics, 12(3), 035407.
Marin, C., Bovolo, F., & Bruzzone, L. (2015). Building Change Detection in Multitemporal Very High Resolution SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2664–2682.
Martinez, A., & Marchand, J. L. (1993). SAR image quality assessment. Revista de Teledeteccion, 2, 12-18.
Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., & Savenije, H. (2011). Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth, Parts A/B/C, 36(7-8), 241-252.
Matikainen, L., Karjalainen, M., Kaartinen, H., & Hyyppä, J. (2004). Rule-based interpretation of high-resolution SAR images for map updating. The Photogrammetric Journal of Finland, 19, 47-62.
Matsuoka, M., & Yamazaki, F. (2004). Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes. Earthquake Spectra, 20(3), 975-994.
Miranda, N., Meadows, P., Type, D., & Note, T. (2015). Radiometric calibration of S-1 Level-1 products generated by the S-1 IPF. Viewed at https://sentinel. esa. int/documents/247904/685163/S1-Radiometric-Calibration-V1. 0. pdf.
Multispectral Instrument Oberview. (2021) Retrieved 3 December 2020. From https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument.
Nakamura, R., Nakamura, S., Kudo, N., & Katagiri, S. (2007). Precise orbit determination for ALOS. Paper presented at the Proceedings of the 20th International Symposium on Space Flight Dynamics, Annapolis, MD, USA, 24-28.
Niu, X., & Ban, Y. (2013). Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International journal of remote sensing, 34(1), 1-26.
Rogers, A., & Ingalls, R. (1969). Venus: Mapping the surface reflectivity by radar interferometry. Science, 165(3895), 797-799.
Sherwin, C. W., Ruina, J., & Rawcliffe, R. (1962). Some early developments in synthetic aperture radar systems. Institute of Radio Engineers Transactions on Military Electronics(2), 111-115.
Shinozuka, M., Ghanem, R., Houshmand, B., & Mansouri, B. (2000). Damage detection in urban areas by SAR imagery. Journal of Engineering Mechanics, 126(7), 769-777.
Simonetto, E., Oriot, H., & Garello, R. (2005). Rectangular building extraction from stereoscopic airborne radar images. IEEE Transactions on Geoscience and Remote Sensing, 43(10), 2386-2395.
Small, D., & Schubert, A. (2008). Guide to ASAR geocoding. ESA-ESRIN Technical Note RSL-ASAR-GC-AD, 1, 36.
TOPSAR Processing. Retrieved from https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/topsar-processing
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., & Brown, M. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9-24.
Van Roessel, J., & Degodoy, R. C. (1974). SLAR Mosaics from Project Radam. Phorogrammerric Engineering, 40, 583-595.
Wiley, C. A. (1985). Synthetic aperture radars. IEEE Transactions on Aerospace and Electronic Systems(3), 440-443.
Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., Eineder, M., & Bamler, R. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220-2234.
Yang, C. H., Soergel, U., Lanaras, C., Baltsavias, E., Cho, K., Remondino, F., & Wakabayashi, H. (2014). Rapid Disaster Analysis based on Remote Sensing: A Case Study about the Tohoku Tsunami Disaster 2011. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7, 209-216. doi:10.5194/isprsarchives-XL-7-209-2014
Yaoguo, Z., Xiangrong, Z., Biao, H., & Ganchao, L. (2014). Using Combined Difference Image and k-Means Clustering for SAR Image Change Detection. IEEE Geoscience and Remote Sensing Letters, 11(3), 691-695. doi:10.1109/lgrs.2013.2275738
Yoon, Y. T., Eineder, M., Yague-Martinez, N., & Montenbruck, O. (2009). TerraSAR-X precise trajectory estimation and quality assessment. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1859-1868.
張中白、王志添、王皓正與陳錕山 (2004)。應用雷達差分干涉法監測都會型地表變形:以中壢工業區爲例。航測及遙測學刊,9(3),9-14。
王國隆、 林俊廷與賴正儒 (2018)。差分干涉合成孔徑雷達方法偵測活耀地表變形-以地震、地層下陷、坡體活動為例。Journal of Professional Geotechnical Engineers(16),17-23。
呂建興 (2001)。使用三軌跡法與ERS資料偵測台灣都市地區地貌變化。台南市,台灣: 測量及空間資訊學系,國立成功大學碩士論文。
陳鴻緒 (2001)。使用ERS資料與SAR干涉技術在臺灣地區求定DEM之實務探討。 台南市, 台灣: 測量及空間資訊學系,國立成功大學碩士論文。
楊佳祥 (2011)。改良式永久散射體雷達干涉法。台南市,台灣: 測量及空間資訊學系,國立成功大學碩士論文。
謝嘉聲 (2006)。以雷達干涉技術偵測地表變形之研究。新竹市,台灣: 土木工程學系,國立交通大學博士論文。