| 研究生: |
翁宸毅 Weng, Cheng-Yi |
|---|---|
| 論文名稱: |
多元修飾亞胺醣衍生物之疏水性基團:合成新穎治療高雪氏症之助疊小分子 Diverse modifications of the hydrophobic moiety of iminosugar derivatives: Studies of new chemical chaperones for the treatment of Gaucher disease |
| 指導教授: |
鄭偉杰
Cheng, Wei-Chieh |
| 共同指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 高雪氏症 、亞胺醣 、助疊小分子 、抑制劑 |
| 外文關鍵詞: | Gaucher disease, iminosugar, chaperone, inhibitor |
| 相關次數: | 點閱:64 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高雪氏症是溶小體堆積症中最普遍的疾病,其原因主要是由於溶小體內之葡萄醣腦苷脂酵素之活性不足,進而造成神經鞘脂中之葡萄醣腦苷脂堆積在溶小體內。N-nonyl-deoxynojirimycin (NN-DNJ)為目前科學界公認之參考助疊小分子,其可在次抑制濃度 (subinhibitory concentration)提升特定突變葡萄醣腦苷脂酵素 (N370S)之活性,但其也會抑制溶小體內α-glucosidase之活性進而造成細胞產生副作用。因此我們不但希望發展能夠提升突變酵素活性外,也希望能減少抑制溶小體內α-glucosidase之化學助疊小分子,藉由組合式化學的方式我們以NN-DNJ為參考分子,合成一系列經由多元修飾疏水性基團的亞胺醣衍生物小分子,並同時利用酵素抑制活性檢測出亞胺醣衍生物60, 62與67其皆為相當有效之抑制劑。另外酵素抑制檢測及利用電腦軟體進行配體嵌合預測指出小分子疏水性官能基的部分與抑制酵素的能力皆有一定程度的關聯性。
亞胺醣衍生物62與67可提升高雪氏症細胞內突變酵素之活性,此外我們再將此助疊小分子62與 67,將其亞胺醣的部分進行多元修飾與其他五環亞胺醣鍵結並保留其疏水性基團,合成出之新穎分子經由細胞生物檢測發現,亞胺醣衍生物69與73不但能提升高雪氏症細胞內突變酵素之活性亦不會抑制溶小體內α-glucosidase之活性,為相當具潛力之助疊小分子。
Gaucher disease is one of the most prevalent lysosomal storage diseases caused by deficient lysosomal β-glucocerebrosidase (Gcase) activity, which leads to accumulation of the sphingolipid glucoslceramide in the lysosomes. NN-DNJ has been discovered as a chemical chaperone. It raises the folded population of the mutant enzyme (N370S) at subinhibitory concentration. However, it also inhibits the lysosomal α-glucosidase activity which causes some side effects. Therefore, we hope to develop new chemical chaperones not only for potency but also for enzyme selectivity. The lipophilic group of NN-DNJ was modified to a series of derivatives by using combinatorial approach. The results of the enzyme activity evaluation showed that DNJ-based six-membered derivatives 60, 62 and 67 are potent Gcase inhibitors. The preliminary SAR study and computational docking models indicated a correlation between lipophilicity and enzyme inhibiton.
In our cell-based study (N370S), compounds 62 and 67 showed potent chemical chaperone effects. In addition, we kept the hydrophobic moieties from 62 and 67 and modified the six-membered iminosugar moiety to new five-membered ones, which have not been studied before. Interestingly, several new molecules such as 69 and 73 showed potent chemical chaperone effects and importantly no side effects observed.
1. Shaner, N. C.; Patterson, G. H.; Davidson, M. W., Advances in fluorescent protein technology. J. Cell Sci. 2007, 120, 4247-4260.
2. Conn, P. M.; Ulloa-Aguirre, A.; Ito, J.; Janovick, J. A., G protein-coupled receptor trafficking in health and disease: Lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol. Rev. 2007, 59, 225-250.
3. Sawkar, A. R.; Haeze, W.D.; Kelly, J. W., Therapeutic strategies to ameliorate lysosomal storage disorders-a focus on Gaucher disease. Cell. Mol. Life Sci. 2006, 63,1179-1192
4. Schulze, H.; Kolter, T.; Sandhoff, K., Principles of lysosomal membrane degradation cellular topology and biochemistry of lysosomal lipid degradation. Biochim. Biophys. Acta. 2009, 1793, 674-683.
5. Sun, Y., Saposin C is required for normal resistance of acid-β-glucosidase to proteolytic degradation. J. Biol. Chem. 2003, 278, 31918-31923.
6. (a) Xu, Y. H.; Barnes, S.; Sun, Y.; Grabowski, G. A., Multi-system disorders of glycosphingolipid and ganglioside metabolism. J. Lipid Res. 2010, 51, 1643-1675. (b) Vaccaro, A. M.; Motta, M.; Tatti, M.; Scarpa, S.; Masuelli, L.; Bhat, M.; Vanier, M. T.; Tylki-Szymanska, A.; Salvioli, R., Saposin C mutations in Gaucher disease patients resulting in lysosomal lipid accumulation, saposin C deficiency, but normal prosaposin processing and sorting. Hum. Mol. Gen. 2010, 19, 2987-2997.
7. Kolter, T.; Sandhoff, K., Lysosomal degradation of membrane lipids. FEBS. Lett. 2010, 584, 1700-1712.
8. Parenti, G., Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med. 2009, 1, 268-279.
9. Gaucher disease synonyms: Glucocerebrosidase deficiency, glucosylceramidase deficiency includes: Gaucher disease type 1; Gaucher disease Type 2 (Acute); Gaucher disease Type 3 (subacute/chronic); Gaucher disease, Perinatal-lethal form; Gaucher disease, Cardiovascular Form
10. 蔡艷秋,江睿玲,鄭奕帝;高雪氏症與其新療法; Chang. Gung. M. J. 2006, 13,1-2
11. Kozarich, J. W., New LSD therapies unfolding. Chem. Biol. 2007, 14, 976-977.
12. Loo, T. W.; Clarke, D. M., Chemical and pharmacological chaperones as new therapeutic agents. Expet. Rev. Mol. Med. 2007, 9, 1-18
13. Fan, J. Q., Ishii, S., Asano, N. and Suzuki, Y., Accelerated transport and maturation of lysosomal alpha-galactosidase A in Farbry lymphoblasts by an enzyme inhibitor. Nat. Med. 1999, 5, 112-115
14. Asano, N.; Ishii, S., Kizu, H.; Ikeda, K.; Yasuda, K.; Kato, A., Martin; O. R.; Fan, J. Q., In vitro inhibition and intracellular enhancement of lysosomal-α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur. J. Biochem. 2000, 267, 4179-4186.
15. (a) Fan, J. Q., Minireview Series: Introduction: Pharmacological chaperone therapy for lysosomal storage disorders-leveraging aspects of the folding pathway to maximize activity of misfolded mutant proteins. FEBS. J. 2007, 274, 4943-4943. (b) Fan, J. Q.; Ishii, S., Minireview: Active-site-specific chaperone therapy for Fabry disease. FEBS. J. 2007, 274, 4962-4971. (c) Zhu, X.; Sheth, K. A.; Li, S.; Chang, H. H.; Fan, J. Q., Rational design and synthesis of highly potent β-glucocerebrosidase inhibitors. Angew. Chem- Int. Edit. 2005, 44, 7450-7453.
16. (a) Sawkar, A. R.; Cheng, W. C.; Beutler, E.; Wong, C. H.; Balch, W. E.; Kelly, J. W., Chemical chaperones increase the cellular activity of N370S beta-glucosidase: A therapeutic strategy for Gaucher disease. Proc. Natl. Acad. Sci. 2002, 99, 15428-15433. (b) Sawkar, A. R.; Adamski-Werner, S. L.; Cheng, W. C.; Wong, C. H.; Beutler, E.; Zimmer, K. P.; Kelly, J. W., Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chem. Biol. 2005, 12, 1235-1244.
17. (a) Brumshtein, B.; Greenblatt, H. M.; Butters, T. D.; Shaaltiel, Y.; Aviezer, D.; Silman, I.; Futerman, A. H.; Sussman, J. L., Crystal structures of complexes of N-butyl-and N-nonyl-deoxynojirimycin bound to acid beta-glucosidase: insight into the mechanism of chemical chaperone action in Gaucher disease. J. Biol. Chem. 2007, 282, 29052-29058. (b) Caines, M. E. C.; Vaughan, M. D.; Tarling, C. A.; Hancock, S. M.; Warren, R. A. J.; Withers, S. G.; Strynadka, N. C. J., Structural and Mechanistic Analyses of endo-Glycoceramidase II, a Membrane-associated Family 5 Glycosidase in the Apo and GM3 Ganglioside-bound Forms. J. Biol. Chem. 2007, 282, 14300-14308. (c) Dvir, H.; Harel, M.; McCarthy, A. A.; Toker, L.; Silman, I.; Futerman, A. H.; Sussman, J. L., X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO. Rep. 2003, 4, 704-709. (d) Lieberman, R. L.; Wustman, B. A.; Huertas, P.; Powe, A. C.; Pine, C. W.; Khanna, R.; Schlossmacher, M. G.; Ringe, D.; Petsko, G. A., Structure of acid β-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat. Chem. Biol. 2006, 3, 101-107. (e) Premkumar, L., X-ray structure of human acid-β-glucosidase covalently bound to conduritol-β-epoxide: Impliaction for Gaucher disease. J. Biol. Chem. 2005, 280, 23815-23819. (f) Wei, R. R.; Hughes, H.; Boucher, S.; Bird, J. J.; Guziewicz, N.; Van Patten, S. M.; Qiu, H.; Pan, C. Q.; Edmunds, T., X-ray and biochemical analysis of N370S mutant human acid-β-Glucosidase. J. Biol. Chem. 2010, 286, 299-308.
18. Yu, Z. Q.; Sawkar, A. R.; Whalen, L. J.; Wong, C. H.; Kelly, J. W., Isofagomine- and 2,5-anhydro-2,5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J. Med. Chem. 2007, 50, 94-100.
19. Meritxell, E. G.; Canals, D.; Casas, J.; Llebaria, A. Delgado, A. Aminocyclitols as Pharmacological chaperones for glucocerebrosidase, a defective enzyme in Gaucher disease. ChemMedChem. 2007, 2, 992-994.
20. Zheng, W.; Padia, J.; Urban, D. J.; Jadhav, A.; Goker-Alpan, O.; Simeonov, A.; Goldin, E.; Auld, D.; LaMarca, M. E.; Inglese, J.; Austin, C. P.; Sidransky, E., Three classes of gluclocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Proc. Natl. Acad. Sci. 2007, 104, 13192-13197.
21. Hruska, K. S.; LaMarca, M. E.; Scott, C. R.; Sidransky, E., Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum. Mutat. 2008, 29, 567-583.
22. Rasmussen, T. S.; Allman, S.; Twigg, G.; Butters, T. D.; Jensen, H. H., Synthesis of N-alkylated noeurostegines and evaluation of their potential as treatment for Gaucher’s disease. Bioorg. Med. Chem. Lett. 2011, 21, 1519-1522.
23. Schitter, G.; Steiner, A. J.; Pototschnig, G.; Scheucher, E.; Thonhofer, M.; Tarling, C. A.; Withers, S. G.; Fantur, K.; Paschke, E.; Mahuran, D. J.; Rigat, B. A.; Tropak, M. B.; Illaszewicz, C.; Saf, R.; Stütz, A. E.; Wrodnigg, T. M., Fluorous Iminoalditols: A new family of glycosidase inhibitors and pharmacological chaperones. ChemBioChem. 2010, 11, 2026-2033.
24. Trapero, A.; Alfonso, I.; Butters, T. D.; Llebaria, A., Polyhydroxylated bicyclic isoureas and guanidines are potent glucocerebrosidase inhibitors and nanomolar enzyme activity enhancers in Gaucher cells. J. Am. Chem. Soc. 2011, 133, 5474-5484.
25. Witte, M. D.; Kallemeijn, W. W.; Aten, J.; Li, K. Y.; Strijland, A.; Donker-Koopman, W. E.; van den Nieuwendijk, A. M. C. H.; Bleijlevens, B.; Kramer, G.; Florea, B. I.; Hooibrink, B.; Hollak, C. E. M.; Ottenhoff, R.; Boot, R. G.; van der Marel, G. A.; Overkleeft, H. S.; Aerts, J. M. F. G., Ultrasensitive in situ visualization of active glucocerebrosidase molecules. Nat. Chem. Biol. 2010, 6, 907-913.
26. Sánchez-Ollé, G.; Duque, J.; Egido-Gabás, M.; Casas, J.; Lluch, M.; Chabás, A.; Grinberg, D.; Vilageliu, L., Promising results of the chaperone effect caused by iminosugars and aminocyclitol derivatives on mutant glucocerebrosidases causing Gaucher disease. Blood. Cell Mol. Dis. 2009, 42, 159-166.
27. Wang, G. N.; Reinkensmeier, G.; Zhang, S. W.; Zhou, J.; Zhang, L. R.; Zhang, L. H.; Butters, T. D.; Ye, X. S., Rational design and synthesis of highly potent pharmacological chaperones for treatment of N370S mutant Gaucher disease. J. Med. Chem. 2009, 52, 3146-3149.
28. (a) Díaz, L. a.; Bujons, J.; Casas, J.; Llebaria, A.; Delgado, A., Click chemistry approach to new N-substituted aminocyclitols as potential pharmacological chaperones for Gaucher Disease. J. Med. Chem. 2010, 53, 5248-5255. (b) Díaz, L. a.; Casas, J.; Bujons, J.; Llebaria, A.; Delgado, A., New glucocerebrosidase inhibitors by exploration of chemical diversity of N-substituted aminocyclitols using click chemistry and in situ screening. J. Med. Chem. 2011, 54, 2069-2079.
29. Rempel, B.P.; Withers, S. G., Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 2008, 8, 570-586.
30. Butters, T. D., Gaucher disease. Curr. Opin. Chem. Biol. 2007, 11, 412-418.
31. Yu, L.; Ikeda, K.; Kato, A.; Adachi, I.; Godin, G.; Compain, P.; Martin, O.; Asano, N., α-1-C-Octyl-1-deoxynojirimycin as a pharmacological chaperone for Gaucher disease. Bioorg. Med. Chem. Lett. 2006, 14, 7736-7744.
32. Tsou, E. L.; Yeh, Y. T.; Liang, P. H.; Cheng, W. C., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009, 65, 93-100.
33. Uriel, C. Y.; Santoyo-González, F., A short and efficient synthesis of 1,5-dideoxy-1,5-imino-D-galactitol (1-deoxy- D-galactostatin) and 1,5-dideoxy,1,5-imino-L-altritol (1-deoxy- L-Altrostatin) from D -Galactose. Synlett 1999, 593-595
34. Liu, J. J.; Numa, M. M. D.; Liu, H. T.; Huang, S. J.; Sears, P.; Shikhman, A. R.; Wong, C. H., Synthesis and high-throughput screening of N-acetyl-beta-hexosaminidase inhibitor libraries targeting osteoarthritis. J. Org. Chem. 2004, 69, 6273-6283.
35. Yang, J. M.; Chen, Y. F.; Tu, Y. Y.; Yen, K. R.; Yang, Y. L., Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS ONE 2007, 5, e428
36. Brumshtein, B.; Salinas, P.; Peterson, B.; Chan, V.; Silman, I.; Sussman, J. L.; Savickas, P. J.; Robinson, G. S.; Futerman, A. H., Characterization of gene-activated human acid-β-glucosidase: Crystal structure, glycan composition, and internalization into macrophages. Glycobiology 2009, 20, 24-32.
37. Brumshtein, B.; Wormald, M. R.; Silman, I.; Futerman, A. H.; Sussman, J. L., Structural comparison of differently glycosylated forms of acid-β-glucosidase, the defective enzyme in Gaucher disease. Acta Crystallogr., Sect D: Biol. Crystallogr. 2006, 62, 1458-1465.
38. Alattia, J. R.; Shaw, J. E.; Yip, C. M.; Prive, G. G., Molecular imaging of membrane interfaces reveals mode of beta-glucosidase activation by saposin C. Proc. Natl. Acad. Sci. 2007, 104, 17394-17399.
39. Atrian, S.; Lo’pez-Vin˜as, E.; Go’mez-Puertas, P.; Chaba’s, A.; Vilageliu, L.; Grinberg, D., An evolutionary and structure-based docking model for glucocerebrosidase-saposin C and glucocerebrosidase-substrate interactions-relevance for Gaucher disease. Proteins 2008, 70, 882–891
40. Hawkins, C. A.; Alba, E. d.; Tjandra, N., Solution structure of human saposin C in a detergent environment. J. Mol. Biol. 2005, 346, 1381-1392.
41. Tatti, M.; Salvioli, R.; Scarpa, S.; Moavero, Sabrina M.; Ciaffoni, F.; Felicetti, F.; Kaneski, Christine R.; Brady, Roscoe O.; Vaccaro, Anna M., The N370S (Asn370→Ser) mutation affects the capacity of glucosylceramidase to interact with anionic phospholipid-containing membranes and saposin C. Biochem J. 2005, 390, 95
42. Rossmann, M.; Schultz-Heienbrok, R.; Behlke, J.; Remmel, N.; Alings, C.; Sandhoff, K.; Saenger, W.; Maier, T., Crystal structures of human saposins C and D: Implications for lipid recognition and membrane interactions. Structure 2008, 16, 809-817.
43. Ahn, V. E.; Leyko, P.; Alattia, J. R.; Chen, L.; Privé, G. G., Crystal structures of saposins A and C. Protein Science 2006, 15, 1849-1857.