簡易檢索 / 詳目顯示

研究生: 謝有聞
Hsieh, Yu-Wen
論文名稱: 港勤拖船透過增設第三基地及改變航速對於油耗之影響-以高雄港為例
The Effects of Fuel Consumption by Adding Third Home Base and Altering Speed for Tugboat- The Case of Kaohsiung Port
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 拖船行駛距離油耗量停泊基地航速
外文關鍵詞: Tugboat, Cruising distance, Fuel consumption, Anchorage, Cruising speed
相關次數: 點閱:114下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以台灣貨櫃吞吐量最大之港口-高雄港為研究主體,探討高雄港若增設第三拖船停泊基地,能使拖船降低多少往返基地之行駛距離,進而降低多少油耗量。本研究以交班時間間隔8小時、12小時兩種情境進行討論,並使用歷史營運資料模擬。本研究之研究目的有二:(1) 若分別在高雄港68號碼頭與71號碼頭設立第三基地後,拖船的總行駛距離是否會減少。(2) 若有減少,本研究將取距離減少較多的碼頭為新增設之第三基地,並模擬拖船在不同航速下,相較於原有兩基地分別能降低多少油耗。
    研究結果顯示,在高雄港68號碼頭或71號碼頭設立第三基地,均能減少拖船往返基地行駛距離。然而,交班間隔為8小時時,於68號碼頭增設第三基地,能使拖船往返基地之行駛距離減少4.93%,於71號碼頭增設第三基地,僅能使拖船往返基地之行駛距離減少0.96%;交班間隔為12小時時,於68號碼頭增設第三基地,能使拖船往返基地之行駛距離減少4.95%,於71號碼頭增設第三基地,僅能使拖船往返基地之行駛距離減少0.93%。因此68號碼頭是較佳的第三基地選擇。
    在選定68號碼頭為第三基地後,本研究模擬在不同的航速之下的油耗量。不管在何種船速下,增設第三基地後均能使拖船往返基地之油耗下降。無論交接班間隔為8小時或12小時,均以航速在12節減少最多:在交接班間隔為8小時能減少7.31公噸,相當於減少5.09%之油耗量;在交接班間隔為12小時能減少6.87公噸,相當於減少5.1%之油耗量。因此本研究認為應於68號碼頭設立第三基地,並建議拖船往返基地避免以全速航行,使高雄港能降低燃油汙染及港務公司非必要的燃油消耗,成為一個環境、財務永續並重的綠色港口。

    This study mainly focuses on the largest port in terms of cargo throughput in Taiwan- Kaohsiung Port, mostly discussing how much cruising distance and fuel consumption of tugboats could be reduced if an additional third tugboat home base in Kaohsiung Port is introduced. Two after shift intervals scenarios are being considered: 8 hours and 12 hours. This study has two research objectives: (1) selects the terminal that can reduce the most cruising distance as a third home base. (2) After adding the third home base, this research simulates the fuel consumption and compares the results with that of the two current home bases.
    The research results are as follows: Under 8 hours after shift interval scenarios, the cruising distance reduces by up to 4.93% when a third home base is added at terminal # 68, whereas the cruising distance of the tugboat reduces by only 0.96% when the additional home base is at terminal # 71. Under 12 hours after shift interval scenario, cruising distance reduces by up to 4.95% when adding the third home base at terminal # 68, whereas the cruising distance reduces by only 0.93% when the additional at terminal # 71. Therefore, terminal number 68 is considered to be a better location for the third tugboat home base.
    After selecting terminal # 68 as a third tugboat home base, this study calculates the fuel consumption under different tugboat cruising speed scenarios. Regardless if whether the after shift interval is 8 hours or 12 hours, fuel consumption can be reduced by 12 knot cruising speed at most. Under 8 hours and 12 hours scenarios, the fuel consumption can be reduced by 5.09% and 5.1%, respectively. Thus, this research recommends that by setting the third home base at terminal number 68 and by avoiding maximum cruising speed will reduce pollution and unnecessary fuel consumption, hence making Kaohsiung Port become the most sustainable green port.

    表目錄 III 圖目錄 IV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 6 1.4 研究流程與架構 6 第二章 文獻回顧 8 2.1 拖船調度相關文獻 8 2.2 拖船船速相關文獻 9 2.3 多停泊基地相關文獻 9 2.4 拖船行駛距離相關文獻 11 2.5 小結 11 第三章 研究方法 15 3.1 研究範圍 15 3.2 研究資料與研究假設 16 3.3 索引與參數說明 17 3.4 模型建立 18 3.5 研究情境 20 3.5.1現有之兩基地的行駛距離及總油耗的模擬 20 3.5.2 在68號碼頭設立第三基地後行駛距離的模擬 23 3.5.3 在71號碼頭設立第三基地後行駛距離的模擬 25 3.5.4 設立第三基地後總油耗之模擬 27 3.5.5 設立第三基地後,針對拖船船速所進行之情境分析 28 3.6 小結 28 第四章 實證分析 29 4.1 拖船資料與碼頭基地間拖船行駛距離之量測 29 4.2 現有兩基地的行駛距離及總油耗之推估 32 4.2.1 交班時間間隔為8小時的情況 32 4.2.2 交班時間間隔為12小時的情況 37 4.3 在68號碼頭或71號碼頭設立第三停泊基地之可能性 39 4.3.1 交班時間間隔為8小時的情況 40 4.3.2 交班時間間隔為12小時的情況 45 4.4 原有兩基地及增設第三基地之油耗比較 50 4.4.1 交班時間間隔為8小時的情況 50 4.4.2 交班時間間隔為12小時的情況 53 4.5 小結 55 第五章 結論與建議 56 5.1 結論 56 5.2 建議 57 5.3 研究限制 57 5.4 未來研究方向 58 參考文獻 59

    Anisyah, A. S., et al. (2015). Route optimization movement of tugboat with A∗ tactical pathfinding in SPIN 3D simulation. Paper presented at the Interactive Digital Media (ICIDM), 2015 4th International Conference on.
    BP. (2016). Annual Report and Form 20-F 2015 (pp. 11).
    Cariou, P. (2011). Is slow steaming a sustainable means of reducing CO2 emissions from container shipping? Transportation Research Part D: Transport and Environment, 16(3), 260-264.
    Corbett, J. J., et al. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. Transportation Research Part D: Transport and Environment, 14(8), 593-598.
    Endresen, Ø., et al. (2003). Emission from international sea transportation and environmental impact. Journal of Geophysical Research: Atmospheres, 108(D17).
    Gyftakis, S., et al. (2015). Optimal Selection of Tugboat Locations in the Aegean and Ionian Seas.
    IAPH. (2015). World Container Traffic Data 2015. Retrieved 0930, 2016, from http://www.iaphworldports.org/iaph/wp-content/uploads/WorldPortTraffic-Data-for-IAPH-using-LL-data2015.pdf
    ICS. (2014). Shipping, World Trade and the Reduction of CO2 Emissions (pp. 3).
    IEA. (2016a). CO2 Emissions from Fuel Combustion (2016 edition) - Key CO2 Emissions Trends(pp.15).Retrievedfrom http://www.iea.org/publications/freepublications/publication/KeyCO2EmissionsTrends.pdf
    IEA. (2016b). Key World Energy Statistics (2016 ed.). Paris, France: OECD/IEA.
    IMO. (2015). Third IMO Greenhouse Gas Study 2014 (pp. iv, 2, 10, 41-42).
    Lewis, E. (1982). Control of body segment differentiation in Drosophila by the bithorax gene complex.
    Liu, Z. (2011). Port tugboat operation scheduling optimization considering the minimum operation distance. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 46(5), 875-881. doi: 10.3969/j.issn.0258-2724.2011.05.027
    Liu, Z. X., & Wang, S. M. (2004). Computer simulation study of port tugboat operation. Xitong Fangzhen Xuebao / Journal of System Simulation, 16(1), 45.
    Lou, D. M., et al. (2017). Cruise speed optimization of tugboat based on real fuel consumption and emission. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 17(1), 93-100.
    Papson, A., et al. (2010). Cost-effectiveness of five emission reduction strategies for inland river tugs and towboats. Transportation Research Record: Journal of the Transportation Research Board(2166), 109-115.
    Wang, S., et al. (2012) Research on the modeling of Tugboat Assignment Problem in container terminal. Vol. 433-440. Advanced Materials Research (pp. 1957-1961).
    Wang, S., & Meng, B. (2007) Resource allocation and scheduling problem based on genetic algorithm and ant colony optimization. Vol. 4426 LNAI. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 879-886).
    Xu, Q., et al. (2014b). Scheduling optimization of port tugboat operation considering multi-anchorage. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 48(1), 132-139+145.
    Xu, Q., et al. (2014a). Optimization on tugboat operation scheduling based upon the hybrid flow shop arrangement. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 34(2), 485-493.
    王巍, et al. (2013). 面向多停泊基地的港口拖轮调度优化研究. Computer Engineering and Applications, 49(13).
    台灣港務股份有限公司高雄分公司. (2017). 2016年高雄港統計年報: 台灣港務股份有限公司高雄港務分公司.
    交通部運輸研究所. (2013). 臺灣港埠節能減碳效益提升之研究(2/4) (pp. 3-14).
    交通部運輸研究所. (2014). 臺灣港埠節能減碳效益提升之研究(3/4) (pp. 6-18).
    臺灣港務港勤股份有限公司. (2017). 臺灣港務港勤股份有限公司. from http://www.tipcmarine.com.tw/chinese/

    下載圖示 校內:2022-06-08公開
    校外:2022-06-08公開
    QR CODE