簡易檢索 / 詳目顯示

研究生: 王榮豪
Wang, Jung-Hao
論文名稱: 微型聚合酶連鎖反應系統應用於DNA檢測及定量
A Miniature Polymerase Chain Reaction System for DNA Detection and Quantification
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 116
中文關鍵詞: 陣列式加熱晶片螢光檢測氣動式微型幫浦同步定量聚合酶連鎖反應連續式
外文關鍵詞: array-type, flow-through, micropump, fluorescence, PCR, quantitative
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 即時偵測同步定量聚合酶連鎖反應(quantitative real-time polymerase chain reaction, Q-PCR)是利用溫控機構(thermal cycler)將目標雙股去氧核醣核酸(deoxyribonucleic, DNA)進行體外增幅,並以螢光檢測儀(fluorimeter)同時監控增幅過程中DNA嵌合螢光(labeling dye)螢光強度的變化以進行定量分析,用於偵檢及診斷之應用。因此,在本研究提出一微型聚合酶連鎖反應系統,整合一連續式聚合酶連鎖反應晶片,並配合螢光偵測儀進行螢光偵測及定量分析。連續式聚合酶連鎖反應晶片的應用是為了減少在聚合酶連鎖反應過程中過多升降溫時間的浪費,然而整個聚合酶連鎖反應時間仍須取決於試劑的傳輸,因此本研究設計了兩種不同的微流體控制模組用來精準控制試劑傳輸。此外,本研究亦採用一新式型陣列式加熱晶片來改善反應區的溫度均勻性。
    該連續式微型晶片包含微流體控制模組及溫控模組,本研究分別利用多重薄膜作動及三組S型氣動式微型幫浦來做為微流體控制模組,用來儲存及快速傳輸試劑通過包含三種不同溫度的反應區,而三不同溫度的反應區則是分別由三個陣列式微加熱器所產生,此三微型加熱器均包含一溫度感測器用以精準地空用反應溫度。此外,可利用微流體控制模組加以調控試劑及樣本於各反應區之反應時間以及所需要的熱循環數目,以最佳化整個聚合酶連鎖反應。而該連續式微型晶片採微流體控制模組與溫控模組分離方式,因此增幅完成後只需更換微流體控制模組即可。本實驗先利用固定式聚合酶連鎖反應晶片進行增生檢測,以確定陣列式微加熱晶片及可拋棄式晶片的可行性。再以連續式微型晶片進行增幅反應,以確定微型晶片能成功增幅目標DNA的特定片段。
    最後,本研究採用一螢光偵測儀來進行螢光訊號偵測,本研究利用B型及C型肝炎來驗證微型聚合酶連鎖反應系統的可行性,而B型及C型肝炎的偵測片段長度分別為350及150鹼基對,並利用SYBR Green螢光嵌合進行定量檢測。在增生反應過程中,利用兩種不同的微流體控制模組均能調控試劑於三反應區停留的時間及增生反應所需的循環次數,再以470奈米波長的藍光發光二極體激發螢光嵌合物而發出530奈米波長的綠光訊號。用於檢測增生的樣本濃度由1至105copies/ml,實驗結果顯示利用微型晶片均能成功進行增生反應並偵測螢光訊號。再利用螢光訊號與循環次數關係決定起始循環次數,並計算微型晶片用於B型及C型肝炎增生檢測的增生率分別為1.688及1.742,而增生結果亦利用電泳膠圖加以確認。本研究將微型聚合酶連鎖反應系統用於傳染性疾病的檢測,採用兩種不同微流體控制模組均能以自動化形式完成增生反應,而整合螢光偵測儀則能達到對於型及C型肝炎的定量檢測,因此微型聚合酶連鎖反應系統對於分子診斷能提供一相當有效率的平台。

    Quantitative real-time polymerase chain reaction (Q-PCR) systems based on PCR with fluorescence-based detection have been intensively used to amplify and simultaneously quantify a targeted DNA molecule. In this study, a Miniature PCR system integrated with a fluorescence detection system is demonstrated to allow for the detection of infectious diseases. To reduce extra cooling and heating times for a PCR process, two new flow-through PCR microchips have been developed. However, the entire reaction time for a PCR process is still determined by sample transport. To tackle these technical challenges, the present study simplifies the control task by adopting two different microfluidic control modules to precisely drive the sample flow. In addition, a new design of array-type microheaters was adopted to improve the thermal uniformity in the PCR chambers.
    The micromachined flow-through PCR chip mainly comprised two micro modules for thermal and microfluidic control. The microfluidic control modules with two different fluid transportation devices by using the multiple membranes and three S-shape micropumps, respectively, were used to rapidly transport the DNA samples through the three heating sections. The microfluidic control modules were also used to adjust the cycle numbers and detention times of the sample in the three temperature control zones, where the PCR thermal cycles were performed. In the micro thermal control module, three individual array-type heating and temperature-sensing sections were integrated to modulate the specific temperature field for three thermal steps of a PCR process. The PCR procedure was also performed by using a stationary PCR chip to confirm the reliability of the thermal uniformity of the array-type microheaters and the feasibility of the disposable micro PCR chip. Then, the flow-through PCR chips with two different microfluidic control modules were also used to perform the PCR procedure.
    Finally, a fluorescence detection system was employed for detection of fluorescent signals. The Miniature PCR system was then used for detection of hepatitis B virus (HBV) and hepatitis C virus (HCV) by using SYBR Green fluorescent dye. The PCR sample was excited by a 470 nm blue LED and detected at 530 nm. Biosamples with a concentration ranging from 1 and 105 copies/ml can be successfully detected using this system. By repetitive determinations of known concentrations of the DNA template, the threshold cycles (Ct) was decided, and the amplification efficiency (Eff) was determined. Slab-gel electropherograms also proved that the detection gene for HBV and HCV could be successfully amplified by using the new flow-through PCR chip.
    In summary, a Miniature PCR system was developed to allow for the detection of infectious diseases. The new micromachined flow-through PCR chips were designed to perform PCR in an automatic format. With the integration of a fluorescence detection system, quantitative detections of HBV and HCV can be achieved. The development of the Miniature PCR system may provide a useful platform for molecular diagnosis.

    Abstract..............................................I 中文摘要..............................................III 誌謝..................................................V Table of Contents.....................................VII List of Tables........................................XI List of Figures.......................................XIII Abbreviation..........................................XXI Nomenclature..........................................XXIII Chapter 1 Introduction................................1 1.1 Background of biotechnology..................1 1.1.1 DNA replication by polymerase chain reaction.1 1.1.2 DNA measurement..............................2 1.1.3 Background of optical detection for DNA analysis..............................................3 1.1.4 Impacts of DNA quantification................4 1.2 Background of microfluidic devices...........5 1.2.1 Bio-MEMS technology..........................5 1.2.2 Microfluidic control component – Microvalves and micropumps............................................6 1.2.3 Micro thermal reactors.......................7 1.2.4 Micro PCR chip...............................8 1.2.4.1 Micro stationary PCR chip....................8 1.2.4.2 Micro continuous-flow/flow-through PCR chip..9 1.3 Motivation and objectives....................11 Chapter 2 Theory......................................15 2.1 DNA replication and quantification...........15 2.1.1 DNA amplification............................15 2.1.2 DNA measurement and analysis.................16 2.2 Pneumatically-driven microvalve and micropump19 Chapter 3 Design, Materials, and Methods..............25 3.1 Design.......................................25 3.1.1 Micro stationary PCR chip....................25 3.1.1.1 Disposable PCR chip..........................25 3.1.1.2 Array-type heating resistors with symmetrical active compensation...................................26 3.1.2 Micro flow-through PCR chip..................27 3.1.2.1 Microfluidic control module..................27 3.1.2.1.1 Multiple-membrane activation.................28 3.1.2.1.2 Pneumatic micropump with a serpentine-shape (S-shape) pneumatic microchannel.........................29 3.1.2.2 Micro thermal control module.................31 3.2 Fabrication..................................31 3.2.1 Micro thermal control module.................32 3.2.2 Microfluidic control module..................32 3.3 Sample preparation...........................33 3.4 Optical detection system.....................34 3.5 On-line fluorescence detection for DNA quantification........................................35 3.6 Operating methods of micro PCR chip..........36 3.6.1 Micro stationary PCR chip....................36 3.6.2 Micro flow-through PCR chip..................37 3.7 Experimental methods of on-line DNA replication and quantification....................................39 Chapter 4 Results and Discussion......................53 4.1 Micro thermal control module.................53 4.1.1 Thermal uniformity...........................53 4.1.2 Thermal conductivity for disposable PCR chip.55 4.2 Microfluidic control module..................55 4.2.1 Multiple-membrane activation.................56 4.2.2 Pneumatic micropump with a S-shape pneumatic microchannel..........................................58 4.3 DNA replication..............................63 4.3.1 Micro stationary PCR chip....................63 4.3.2 Micro flow-through PCR chip..................64 4.4 On-line DNA replication and quantification...66 4.4.1 On-line DNA replication and quantification...66 4.4.2 Counting results of Ct and Eff...............67 Chapter 5 Conclusion..................................91 5.1 Overview of dissertation.....................91 5.2 Future work..................................93 References............................................95 Biography.............................................109 Publication List......................................110

    [1] R. K. Saiki, S. Scharf, F. Falloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim, “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia,” Science, vol. 230, pp. 1350-1354, 1985.
    [2] K. B. Mullis, F. Falloona, S. Scharf, R. K. Saiki, G. T. Horn, and H. Erlich, “Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction,” Cold Spring Harbor Symp Quant Biol, vol. 51, pp. 263-273, 1986.
    [3] R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, “Primer-directed enzymatic amplification of DNA with a thermosatble DNA polmerase,” Science, vol. 239, pp. 487-491, 1988.
    [4] J. Sambrook and D. W. Russel, “Molecular Cloning: A Laboratory Manual, 3rd ed.,” Cold Spring Harbor Laboratory Press., New York, 2001.
    [5] A. R. Pavlov, N. V. Pavlov, S. A. Kozyavkin, and A. I. Slesarev, “Recent developments in the optimization of thermostable DNA polymerases for efficient application,” Trends in Biotechnology, vol. 22, pp. 253-260, 2004.
    [6] R. Higuchi, G. Dollinger, P. S. Walsh, and R. Griffith, “Simultaneous amplification and detection of specific DNA sequences,” Biotechnology, vol. 10, pp. 413-417, 1992.
    [7] R. Higuchi, C. Fockler, G. Dollinger, and R. Griffith, “Kinetic PCR analysis: real-time monitoring of DNA amplification reactions,” Biotechnology, vol. 11, pp. 1026-1030, 1993.
    [8] V. H. van der Velden, A. Hochhaus, G. Cazzaniga, T. Szczepanski, J. Gabert, and J. J. van Dongen, “Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR; principles, approaches, and laboratory aspects,” Leukemia, vol. 17, pp. 1013-1034, 2003.
    [9] C. T. Wittwer, K. M. Ririe, R. V. Andrew, D. A. David, R. A. Gundry, and U. J. Balis, “The LightCycler: a microvolume multisample fluorimeter with rapid temperature control,” BioTechniques, vol. 22, pp. 176-181, 1997.
    [10] L. G. Lee, C. R. Connell, and W. Bloch, “Allelic discrimination by nick-translation PCR with fluorogenic probes,” Nucleic Acids Research, vol. 21, pp. 3761-3766, 1993.
    [11] K. J. Livak, S. J. Flood, J. Marmaro, W. Giusti, and K. Deetz, “Oligonucleotides with fluorescent dye at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization,” PCR Methods Application, vol. 4, pp. 357-362, 1995.
    [12] C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams, “Real time quantitative PCR,” Genome Research, vol. 6, pp. 986-994, 1996.
    [13] C. T. Wittwer, M. G. Herrmann, A. A. Moss, and R. P. Rasmussen, “Continuous fluorescence monitoring of rapid cycle DNA amplification,” BioTechniques, vol. 22, pp. 130–138, 1997.
    [14] S. Kai, Y. Akira, I. Yutaka, M. Shigeki, and M. Hiroaki, “A heaterintegrated transparent microchannel chip for continuous flow PCR,” Sensors and Actuators B, vol. 84, pp. 283–289, 2002.
    [15] R. Kumaran and R. Kim, “A fluorescence based assay for DNA damage by styrene oxide,” Sensors and Actuators B, vol. 91, pp. 205–210, 2003.
    [16] C. T. Wittwer, M. G. Herrmann, C. N. Gundry, S. J. Kojo, and E. Johnson, “Real-time multiplex PCR assays,” Methods, vol. 25, pp. 430–442, 2001.
    [17] E. S. Kolesar, P. B. Allen, J. W. Wilken, J. T. Howard, “Implementation of micromirror arrays as optical binary switches and amplitude modulators,” Thin Solid Films, vol. 332, pp. 1–9, 1998.
    [18] A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensors and Actuators A, vol. 91, pp. 36–372, 2001.
    [19] A. Q. Liu, X. M. Zhang, V. M. Murukeshan, Q. X. Zhang, Q. B. Zhou, and S. Uppili, “An optical crossconnect (OXC) using drawbridge micromirrors,” Sensors and Actuators A, vol. 97–98, pp. 227–238, 2002.
    [20] N. H. Chiem and D. J. Harrison, “Microchip systems for immunoassay: an integrated immunorezctor with electrophoretic separation for serum theophylline determination,” Clinical Chemistry, vol. 44, pp. 591-598, 1998.
    [21] K. K. Jaln, “Biotechnological applications of lab-chips and microarrays,” Trends in Biotechnology, vol. 18, pp. 278-280, 2000.
    [22] R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materials Today, vol. 5, pp. 22-29, 2002.
    [23] K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, “Microchip-based chemical and biochemical analysis systems,” Journal of Chromatography A, vol. 987, pp. 197-204, 2003.
    [24] B. Ziaie, A. Baldi, M. Lei, Y. Gu, and R. A. Siegel, “Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery,” Advanced Drug Delivery Reviews, vol. 56, pp. 145-172, 2004.
    [25] S. Shoji, S. Nakagawa, and M. Esashi, “Micropump and sample injector for integrated chemical analyzing systems,” Sensors and Actuators A, vol. 21-23, pp.189-192, 1990.
    [26] J. G. Spencer, “Piezoelectric micropump with three valves working peristaltically,” Sensors and Actuators A, vol. 21-23, pp. 203-206, 1990.
    [27] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, “A bidirectional silicon micropump,” Sensors and Actuators A, vol. 50, pp. 81-86, 1995.
    [28] F. C. M. van De Pol, H. T. G. van Lintel, M. Elwenspoek, and J. H. J. Fluitman, “Therpneumatic micropump based on microengineering techniques,” Sensors and Actuators A, vol. 21, pp. 198-202, 1990.
    [29] O. C. Jeong and S. S. Yang, “Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm,” Sensors and Actuators A, vol. 83, pp. 249-255, 2000.
    [30] W. Zhang and C. H. Ahn, “A bidirectional magnetic micropump on a silicon wafer,” IEEE Solid-State Sensor and Actuator Workshop 1996 Technical Digest, South Carolina, USA, pp. 94-97, 1996.
    [31] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-116, 2000.
    [32] A. Y. Fu, H. P. Chou, Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Analytical Chemistry, vol. 74, pp. 2451-2457, 2002.
    [33] T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science, vol. 298, pp. 580-584, 2002.
    [34] M. A. Northrup, M. T. Ching, R. M White, and R. T. Watson, “DNA amplification with a microfabricated reaction chamber,” Proceedings of the 7th International Conference on Solid-State Sensors and Actuators (Transducers93), Yokohama, Japan, pp. 924–926, 1993.
    [35] M. H. Wu, J. P. G. Urban, Z. Cui, and Z. F. Cui, “Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture,” Biomedical Microdevices, vol. 8, pp. 331-340, 2006.
    [36] C. W. Huang and G. B. Lee, “A microfluidic system for automatic cell culture,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1266-1274, 2007.
    [37] P. Meneghetti and S. Qutubuddin, “Synthesis, thermal properties and applications of polymer-clay nanocomposites,” Thermochimica Acta, vol. 442, pp. 74-77, 2006.
    [38] A. T. Woolley, D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, M. A. Northrup, “Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device,” Analysis Chemistry, vol. 68, pp. 4081-4086, 1996.
    [39] S. Poser, T. Schulz, U. Dillner, V. Baier, J. M. Köhler, D. Schimkat, G. Mayer, and A. Siebert, “Chip elements for fast thermocycling,” Sensors and Actuators A, vol. 62, pp. 672–675, 1997.
    [40] J. H. Daniel, S. Iqbal, R. B. Milington, D. F. Moore, C. R. Lowe, D. L. Leslie, M. A. Lee, and M. J. Pearce, “Silicon microchambers for DNA amplification,” Sensors and Actuators A, vol. 71, pp. 81–88, 1998.
    [41] I. Schneegaβ and J. M. Köhler, “Flow-through polymerase chain reactions in chip thermocyclers,” Reviews in Molecular Biotechnology, vol. 82, pp. 101-121, 2001.
    [42] E. T. Lagally, P. C. Simpson and R. A. Mathies, “Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system,” Sensors and Actuators B, vol. 63, pp. 138-146, 2000.
    [43] C. Y. Lee, G. B. Lee, H. H. Liu, and F. C. Huang, “MEMS-based Temperature Control Systems for PCR Applications,” The International Journal of Nonlinear Sciences and Numerical Simulations, vol. 3, pp. 177-180, 2002.
    [44] J. Liu, M. Enzelberger, and S. Quake, “A nanoliter rotary device for polymerase chain reaction,” Electrophoresis, vol. 23, pp. 1531-1536, 2002.
    [45] C. S. Liao, G. B. Lee, J. J. Wu, C. C. Chang, T. M. Hsieh, F. C. Huang, and C. H. Luo, “Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases,” Biosensors and Bioelectronics, vol. 20, pp. 1341-1348, 2005.
    [46] D. S. Yoon, Y. S. Lee, Y. Lee, H. J. Cho, S. W. Sung, K. W. Oh, J. Cha, and G. Lim, “Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip,” Journal of Micromechanics and Microengineering, vol. 12, pp. 813-823, 2002.
    [47] S. W. Sung, S. Park, D. S. Yoon, Y. Lee, and G. Lim, “Modeling and control of microthermal cycler for DNA polymerase chain reaction,” Industry and Engineering Chemistry Research, vol. 42, pp. 6104-6111, 2003.
    [48] W. Yan, L. Du, J. Wang, L. Ma, and J. Zhu, “Simulation and experimental study of PCR chip based on silicon,” Sensors and Actuators B, vol. 108, pp. 695-699, 2005.
    [49] J. El-Ali, I. R. Perch-Nielsen, C. R. Poulsen, D. D. Bang, P. Telleman, and A. Wolff, “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated microheaters and temperature sensor,” Sensors and Actuators A, vol. 110, pp. 3-10, 2004.
    [50] Q. Zou, U. Sridhar, Y. Chen, and J. Singh, “Miniature independently controllable multichamber thermal cycler,” IEEE Sensors Journal, vol. 3, pp. 774-780, 2003.
    [51] P. Neuzil, J. Pipper, and T. M. Hsieh, “Disposable real-time microPCR device: lab-on-a-chip at a low cost,” Molecular Biosystems, vol. 2, pp. 292-298, 2006.
    [52] G. H. W. Sanders and A. Manz, “Chip-based microsystems for genomic and proteomic analysis,” Trends in Analytical Chemistry, vol. 19, pp. 364-378, 2000.
    [53] T. Kanagawa, “Review: Bias and artifacts in multitemplate polymerase chain reactions (PCR)” Journal of Bioscience and Bioengineering, vol. 96, pp. 317-323, 2003.
    [54] P. A. Auroux, Y. Koc, A. deMello, A. Manz and P. J. R. Day, “Miniaturised nucleic acid analysis,” Lab on a Chip, vol. 4, pp. 534-546, 2004.
    [55] M. A. Northrup, B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, and P. Stratton, “A Miniature analytical instrument for nucleic acid based on micromachined silicon reaction chambers,” Analysis Chemistry, vol. 70, pp. 918-922, 1998.
    [56] W. C. Dunn, S. C. Jacobson, L. C. Waters, N. Kroutchinina, J. Khandurina, and R. S. Foote, “PCR amplification and analysis of simple sequence length polmorphisms in mouse DNA using a single microchip device,” Analysis Biochemistry, vol. 277, pp. 157-160, 2000.
    [57] J. Yang, Y. Liu, C. B. Rauch, R. L. Stevens, R. H. Liu, and R. Lenigk, High sensitivity PCR assay in plastic micro reactors, Lab on a Chip, vol. 2, pp. 179-187, 2002.
    [58] I. Erill, S. Campoy, N. Erill, J. Barbé, J. Aguiló, “Biochemical analysis and optimization of inhibition and adsorption phenomena in glass–silicon PCR-chips,” Sensors and Actuators B, vol. 96, pp. 685-692, 2003.
    [59] R. Marie, J. Thaysen, C. B. V. Christensen, and A. Boisen, “A cantilever-based sensor for thermal cycling in buffer solution,” Microelectron Engineering, vol. 67-68, pp. 893-898, 2003.
    [60] Y. S. Shin, K. Cho, S. H. Lim, S. Chung, S. J. Park, C. Chung, D. C. Han, and J. K. Chang, “PDMS-based micro PCR chip with Parylene coating,” Journal of Micromechanics and Microengineering, vol. 13, pp. 768-774, 2003.
    [61] A. Gulliksen, L. Solli, F. Karlsen, H. Rogne, E. Hovig, T. Nordstrøm, and R. Sirevåg, “Real-time nucleic acid sequence-based amplification in nanoliter volumes,” Analysis Chemistry, vol. 76, pp. 9-14, 2004.
    [62] J. El-Ali, I. R. Perch-Nielsen, C. R. Poulsen, D. D. Bang, P. Telleman, and A. Wolff, “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor,” Sensors and Actuators A, vol. 110, pp. 3-10, 2004.
    [63] J. Felbel, I. Bieber, J. Pipper, and J. M. Köhler, “Investigations on the compatibility of chemically oxidized silicon (SiOx)-surfaces for applications towards chip-based polymerase chain reaction,” Chemical Engineering Journal, vol. 101, pp. 333-338, 2004.
    [64] X. Zhou, D. Liu, R. Zhong, Z. Dai, D. Wu, and H. Wang, “Detection of SARS-coronavirus by a microfluidic chip system,” Electrophoresis, vol. 25, pp. 3032-3039, 2004.
    [65] K. Shen, X. Chen, M. Guo, and J. Cheng, “A microchip-based PCR device using flexible printed circuit technology,” Sensors and Actuators B, vol. 105, pp. 251-258, 2005.
    [66] Y. Matsubara, K. Kerman, M. Kobayashi, S. Yamanura, Y. Mrita, and E. Tamiya, “Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes,” Biosensors and Bioelectronics, vol. 20, pp. 1482-1490, 2005.
    [67] H. Nakano, K. Matsuda, M. Yohda, T. Nagamune, I. Endo, and T. Yamane, “High speed polymerase chain reaction in constant flow,” Biosciences, Biotechnology and Biochemistry, vol. 58, pp. 349-352, 1994.
    [68] M. U. Kopp, A. J. deMello, and A. Manz, “Chemical Amplification: Continuous-Flow PCR on a Chip,” Science, vol. 280, pp. 1046-1048, 1998.
    [69] I. Schneegaβ I, R. Bräutigam and J. M. Köhler, “Miniature flow-through PCR with different template types in a silicon chip thermocycler,” Lab on a chip, vol. 1, pp. 42-49, 2001.
    [70] K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, “A heater-integrated transparent microchannel chip for continuous-flow PCR,” Sensors and Actuators B, vol. 84, pp. 283-289, 2002.
    [71] M. Curcio and J. Roeraade, “Continuous segmented-flow polymerase chain reaction for high-throughput Miniature DNA amplification,” Analysis Chemistry, vol. 75, pp. 1-7, 2003.
    [72] N. Park, S. Kim, and J. H. Hahn, “Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction,” Analysis Chemistry, vol. 75, pp. 6029-6033, 2003.
    [73] P. J. Obeitn, T. K. Christopoulos, H. J. Crabtree, and C. J. Backhouse, “Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection,” Analysis Chemistry, vol. 75, pp. 288-295, 2003.
    [74] J. West, B. Karamata, B. Lillis, J. P. Gleeson, J. Alderman, J. K. Collins, W. Lane, A. Mathewson, and H. Berney, “Application of magnetohydrodynamic actuation to continuous flow chemistry,” Lab on a Chip, vol. 2, pp. 224-230, 2002.
    [75] J. Chen, M. Wabuyele, H. Chen, D. Patterson, M. Hupert, H. Shadpour, D. Nikitopoulos, and S. A. Soper, “Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate, Analysis Chemistry, vol. 77, pp. 658-666, 2005.
    [76] P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Tropica, vol. 89, pp. 357-369, 2004.
    [77] J. Chiou, P. Matsudaira, A. Sonin, and D. Ehrlich, “A Closed-Cycle Capillary polymerase chain reaction machine,” Analysis Chemistry, vol. 73, pp. 2018-2021, 2001.
    [78] M. Bu, T. Melvin, G. Ensell, J. S. Wilklnson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” Journal of Micromechanics and Microengineering, vol. 13, pp. S125-S130, 2003.
    [79] O. Kalinina, I. Lebedeva, J. Brown, and J. Silver, “Nanoliter scale PCR with TaqMan detection,” Nucleic Acids Research, vol. 25, pp. 1999–2004, 1997.
    [80] M. S. Ibrahim, R. S. Lofts, P. B. Jahrling, E. A. Henchal, V. W. Weedn, M. A. Northrup, and P. Belgrader, “Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA,” Analysis Chemistry, vol. 70, pp. 2013-2017, 1998.
    [81] H. Nagai, Y. Murakami, Y. Morita, K. Yokoyama, and E. Tamiya, “Development of A Microchamber Array for Picoliter PCR,” Analysis Chemistry, vol. 73, pp. 1043-1047, 2001.
    [82] Y. C. Lin, M. Li, M. T. Chung, C. Y. Wu, and K. C. Young, “Real-time microchip polymerase-chain-reaction system,” Sensors and Materials, vol. 14, pp. 199-208, 2002.
    [83] J. A. Higgins, S. Nasarabadi, J. S. Karns, D. R. Shelton, M. Cooper, A. Gbakima, and R. P. Koopman, “A handheld real time thermal cycler for bacterial pathogen detection,” Biosensors and Bioelectronics, vol. 18, pp. 1115-1123, 2003.
    [84] P. Belgrader, C. J. Elkin, S. B. Brown, S. N. Nasarabadi, R. G. Langlois, F. P. Milanovich, and B. W. Colston, Jr., and G. D. Marshall, “A reusable flow-through polymerase chain reaction instrument for the continuous monitoring of infectious biological agents,” Analysis Chemistry, vol. 75, pp. 3446-3450, 2003.
    [85] N. C. Cady, S. Stelick, M. V. Kunnavakkam, and C. A. Batt, “Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform,” Sensors and Actuators B, vol. 107, pp. 332-341, 2005.
    [86] T. M. Hsieh, C. H. Luo, F. C. Huang, J. H. Wang, L. J. Chien, and G. B. Lee, “Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction,” Sensors and Actuators B, vol. 130, pp. 848-856, 2008.
    [87] D. S. Lee, M. H. Wu, U. Ramesh, C. W. Lin, T. M. Lee, and P. H. Chen, “A novel real-time PCR machine with a Miniature spectrometer for fluorescence sensing in a micro liter volume glass capillary,” Sensors and Actuators B, vol. 100, pp. 401-410, 2004.
    [88] W. Rychlik, W. J. Spencer, and R. E. Rhoads, “Optimization of the annealing temperature for DNA amplification in vitro,” Nucleic Acids Research, vol. 18, pp. 6409–6412, 1990.
    [89] T. Nolan, R. E. Hands, and S. A. Bustin, “Quantification of mRNA using real-time RT-PCR,” Nature Protocol, vol. 1, pp. 1559–1582, 2006.
    [90] S. A. Bustin and T. Nolan, “Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction,” Journal of Biomolecular Techniques, vol. 15, pp. 155-166, 2004.
    [91] M. L. Wong and J. F. Medrano, “Real-time PCR for mRNA quantitation,” BioTechniques, vol. 39, pp. 1-11, 2005.
    [92] J. S. Yuan1, A. Reed, F. Chen, C. Neal. Stewart, and Jr, “Statistical analysis of real-time PCR data,” BMC Bioinformatics, vol. 7, pp. 1-12, 2006.
    [93] M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT–PCR,” Nucleic Acids Research, vol. 29, pp. 45-50.
    [94] D. C. Duffy, H. L. Gillis, J. Lin, N. F. Sheppard, Jr., and G. J. Kellogg, “Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays,” Analytical Chemistry, vol. 71, pp. 4669-4698, 1999.
    [95] H. Andersson, C. Jönsson, C. Moberg, and G. Stemme, “Consecutive microcontact printing-ligands for asymmetric catalysis in silicon channels,” Sensors and Actuators B, vol. 79, pp. 78-84, 2001.
    [96] L. H. He, L. H. Lim, and B. S. Wu, “A continuum model for size-dependent deformation of elastic films of nano-scale thickness,” International Journal of Solids and Structures, vol. 41, pp. 847-857, 2004.
    [97] M. T. A. Saif, B. E. Alaca, and H. Sehitoglu, “Analytical modeling of electrostatic membrane actuator for micro pumps,” Journal of microelectromechanical systems, vol. 3, pp. 335-345, 1999.
    [98] C. H. Wang and G. B. Lee, “Automatic bio-sensing diagnostic chips integrated with micropumps and microvalves for multiple disease detection,” Biosensors and Bioelectronics, vol. 21, pp. 419-425, 2005.
    [99] C. H. Wang and G. B. Lee, “Pneumatically-driven peristaltic micropumps utilizing serpentine-shape channels,” Journal of Micromechanics and Microengineering, vol. 16, pp. 341-348, 2006.
    [100] S. H. Yeh, C. Y. Tsai, J. H. Kao, C. J. Liu, T. J. Kuo, M. W. Lin, W. L. Huang, S. F. Lu, J. Jih, D. S. Chen, P. J. Chen, “Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis,” Journal of Hepatology, vol. 41, pp. 659-666, 2004.
    [101] E. Thomas, K. Gerlinde, and P. Birgit, “Detection of telomerase components by quantitative real-time on-line PCR analysis with the lightcycler,” Biochemica, vol. 4, pp. 16-19, 2000.
    [102] B. W. van Oudheusden, ”The determination of the effective ambient temperature for thermal flow sensors in a non-isothermal environment,” Sensors and Actuators A, vol. 72, pp. 38-45, 1999.
    [103] N. Sabatè, J. Santander, L. Fonseca, I. Grãcia, and C. Canè, “Multi-range silicon micromachined flow sensor,” Sensors and Actuators A, vol. 110, pp. 282-288, 2004.
    [104] W. Y. Sim, H. J. Yoon, O. C. Jeong, and S. S. Yang, “A phase-change type micropump with aluminum flap valves,” Journal of Micromechanics and Microengineering, vol. 13, pp. 286-294, 2003.
    [105] G. H. Feng and E. S. Kim, “Micropump based on PZT unimorph and one-way parylene valves,” Journal of Micromechanics and Microengineering, vol. 14, pp. 429-435, 2004.

    下載圖示 校內:2009-08-13公開
    校外:2009-08-13公開
    QR CODE