| 研究生: |
蔡鎮宇 Tsai, Chen-yu |
|---|---|
| 論文名稱: |
藉由四氯化鈦促進醇類的親核取代反應及製備過氧縮醛化合物 TiCl4-promoted preparation of peroxy acetals and nucleophilic substitution of alcohols |
| 指導教授: |
宋光生
Sung, kuang-sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 親核取代 、過氧縮醛 、醇 、四氯化鈦 |
| 外文關鍵詞: | Titanium tetrachloride, alcohol, nucleophilic substituent, peroxyacetal |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部份
鈦金屬在有機合成上是普遍使用的試劑,而四氯化鈦( TiCl4 )由於可做為路易士酸,因此在催化特定反應上扮演很重要的角色。我們在使用TiCl4/TBHP氧化一系列苯醇的實驗中,發現當苯環上含有推電子取代基時,反應將不會走氧化路徑,而是行親核取代反應。在此研究中我們使用不同的推電子取代基之苯醇及親核試劑來證實TiCl4催化醇類進行親核取代反應的途徑。
第二部份
利用TiCl4催化之特性將苯醛合成一系列過氧縮醛化合物。
Part 1
Since titanium tetrachloride can be a strong lewis acid and titanium is a commonly used reagent in organic synthesis, titanium plays a very important role in catalyzing some specific reaction. In the attempt to oxidize a series of benzyl alcohols with TiCl4/TBHP, we discover that a nucleophilic substitution reaction instead of an oxidation reaction takes place for benzene with an electron donating substituent group. In this research, we use benzyl alcohols with donating substituents and nucleophilic reagents to prove that TiCl4 activates alcohol in the nucleophilic substituent reaction.
Part 2
Use the catalytic characteristic of TiCl4 to synthesize a series of peroxy acetals from benzaldehyde.
1. G. Buxbaum, G. Pfaff, Industrial Inorganic Pigments., Wiley-VCH, 2005.
2. L. A. Paquette, Encyclopedia of reagents for organic synthesis., J. Wiley, 1995.
3. D. Lenoir, S, 1977.
4. C. Palazzi, L. Colombo, C. Gennari, TL, 1986, 27, 1735.
5. G. A. Molander, D. C. Shubert, J. Am. Chem. Soc., 1987, 109, 576.
6. M. D. Bednarski, J. P. Lyssikatos, COS, 1991, 2, 661.
7. S. J. Danishefsky, W. H. Pearson, D. F. Harvey, J. Am. Chem. Soc., 1984, 106, 2456.
8. A. Rieche, H. Gross, E. Hoft, OS, 1967, 47, 1.
9. W. A. White, H. Weingarten, J. Org. Chem., 1967, 213.
10. S. S. Woodard, M. G. Finn, K. B. Sharpless, J. Am. Chem. Soc., 1991, 106.
11. C. T. Shei, H. L. Chien, K. Sung, Synlett., 2008, 1021.
12. 簡浩倫;國立成功大學碩士論文 2008
13. G. Bartoli, R. Dalpozzo, Eur. J. Org. Chem., 2004, 2176
14. J. Johann, S. Volker, Tetrahedron: Asymmetry., 1997, 169.
15. A. Citterio, M. Gandolfi, O. Piccolo, L. Filippini, L. Tinucci, Synthesis., 1984, 760.
16. H. Takahashi, N. Kashiwa, H. Kobayashi, Tetrahedron Letters., 2002, 5751.
17. M. Ochiai, T. Ito, H. Takahashi, J. Am. Chem. Soc., 1996, 7716
18. K. Zmitek, M. Zupan, J. Org. Chem., 2007, 6534.
19. S. H. GOH, J. Org. Chem., 1972, 3098.
20. R. Rathore, J. K. Kochi, J. Org. Chem., 1995, 7479
21. G. M. Brooke, S. Mohammed, J. Chem. Soc., Perkin Trans. 1., 1997, 3371
22. K. I. Fujita, Y. Enoki, Tetrahedron., 2008, 1943
23. S. Torii, H. Tanaka, J. Org. Chem., 1991, 363
24. J. R. L. Smith, J. M. Linford, J. Chem. Soc. Perkin Trans. II., 1984, 1099
25. M. M. Heravi, N. Z. Ahari, Phosphorus, Sulfur, and Silicon, 2005, 1701
26. P. Wan, B. Chak, J. Chem. Soc. Perkin Trans. II., 1986, 1751
27. C. Helgorsky, A. Saux, Tetrahedron., 1996, 8263
28. M. Kunishima, D. Nakata, Chem. Pharm. Bull., 2001, 97
29. J. Christoffers, Synthetic Communications., 1999, 117
30. T. Sakai, K. Miyata, S. Tsuboi, Bull. Chem. Soc. Jpn., 1989, 4072
31. D. J. Kopecky, S. D. Rychnovsky, J. Org. Chem., 2000, 191