簡易檢索 / 詳目顯示

研究生: 林則維
Lin, Ze-Wei
論文名稱: 以放電紡絲法生長CuAlO2奈米線之研究
Growth of CuAlO2 nanowires by electrospinning
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 銅鋁氧化物放電紡絲法奈米線
外文關鍵詞: CuAlO2, electrospinning, nanowires
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以放電紡絲法探討製程參數如基板加熱,與前驅溶液中高分子種類和重量,與Zn摻雜對CuAlO2奈米線生長之影響。結果顯示基板加熱可以加速紡絲纖維的水分揮發及附著,促進CuAlO2奈米線之生長。而前驅溶液中PVA(分子量:88000-98000)重量超過1g時會促進CuO相生長。在本實驗中,紡絲纖維經空氣中1100℃退火後可得到100〜200 nm的純相CuAlO2奈米線。Zn摻雜會促進CuO相生長。添加Zn=1.5%、在氬氣氣氛中退火溫度達1150℃,可抑制CuO相生長。若添加Zn超過1.5%、在空氣中冷卻或者溫度未達1150℃則CuO相會生成。TEM/EDS分析結果顯示CuAlO2與Zn摻雜CuAlO2奈米線多為多晶結構,且奈米線中Cu和Al的分布不均。
    經由紫外光光譜量測,CuAlO2與Zn摻雜CuAlO2奈米線其直接能隙分別為3.4、3.93、4.7eV與3.44、3.92、4.72eV,此現象可能與奈米線中Cu和Al的分布不均有關。

    The effects of processing parameters such as substrate heating, the kind and weight of polymer in the precursor solution, and Zn doping on the growth of CuAlO2 nanowires (NWs) by electrospinning were explored. The results showed that the substrate heating at 80℃ can enhance the adherence of as-formed fibers and the evaporation of water therein and thus improve the subsequent growth of CuAlO2 NWs at 1100℃. The weight of PVA polymer in the precursor solution above 1.5 g enhanced the formation of CuO in CuAlO2 NWs. In the present study, pure CuAlO2 NWs with 100-200 nm in size could be synthesized by heating the fibers at 1100℃ in air. Zn doping also enhanced the formation of CuO in CuAlO2 NWs. For the fibers electrospined from the precursor solution with 1.5% Zn, annealing at 1150℃ in Ar could suppressed the formation of CuO in Zn-doped CuAlO2 NWs. From TEM/EDS analyses, most CuAlO2 and Zn-doped CuAlO2 NWs were polysrystalline and the distribution of Cu and Al elements in them was inhomogeneous.
    From the UV-vis. spectra, the direct bandgaps of CuAlO2 and Zn-doped CuAlO2 NWs were measured to be 3.4, 3.93, 4.7eV and 3.44, 3.92, 4.72eV, respectively. This result may be explained in terms of the inhomogeneous distribution of Cu and Al elements in them.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 第一章 緒論 1 第二章 熱電原理及材料 4 2.1 基本熱電原理 4 2.1.1 Seebeck效應 4 2.1.2 Peltier效應 5 2.1.3 Thomson效應 5 2.1.4 熱電優值 7 2.1.5 熱電優質的發展歷史趨勢 8 2.2 熱電材料的介紹 9 2.2.1 熱電材料物理特性需求 9 2.2.2 熱電材類分類 10 2.2.3 氧化物熱電材料 10 2.2.4 提升材料熱電優值的方法 12 2.3 CuAlO2文獻回顧 15 2.3.1 CuAlO2的結構 15 2.3.2 CuAlO2在光電領域之研究 16 2.3.3 CuAlO2在熱電領域之研究 17 2.4 研究目的 18 第三章 儀器原理及實驗方法 20 3.1 儀器原理 20 3.1.1 放電紡絲法原理 20 3.1.2 放電紡絲的基本裝置 21 3.1.3 放電紡絲的優缺點 21 3.1.4 火花電漿燒結(spark plasma sintering SPS) 23 3.1.5 掃瞄式電子顯微鏡 24 3.1.6 穿透式電子顯微鏡 25 3.1.7 X光能量散佈分析儀 26 3.1.8 X光繞射儀 27 3.1.9 紫外光可見光(UV-vis)光譜儀 28 3.2 實驗藥品 29 3.3 實驗流程 29 3.4 製備CuAlO2奈米線 30 3.4.1 前驅溶液製備 30 3.4.2 放電紡絲的實驗步驟 31 3.4.3 熱處理 31 3.5 摻雜Zn之CuAlO2奈米線 32 3.6 CuAlO2燒結體的製備 32 3.6.1 生胚成形 32 3.6.2 火花電漿燒結(Spark Plasma Sintering, SPS) 32 3.7 熱電性質的量測 33 3.7.1 樣品密度量測 33 3.7.2 電傳導係數與Seebeck係數量測 34 3.7.3 熱傳導率量測 34 3.7.4 載子濃度與遷移率量測 35 3.8 實驗分析 36 3.8.1 掃瞄式電子顯微鏡分析 36 3.8.2 X光繞射儀 36 3.8.3 穿透式電子顯微鏡分析 36 3.8.4 紫外光可見光(UV-vis)光譜儀 37 第四章 結果與討論 38 4.1 製備CuAlO2奈米線之參數比較 38 4.1.1 使用加熱板對放電紡絲的影響 38 4.1.2 前驅溶液中高分子種類的選取 39 4.1.3 改變前驅溶液中高分子PVA重量之影響 40 4.2 CuAlO2奈米線之各項分析 41 4.2.1 CuAlO2奈米線之微結構 41 4.2.2 CuAlO2奈米線之元素組成 41 4.3 製備摻雜Zn之CuAlO2奈米線之參數比較 42 4.3.1 摻雜Zn取代之位置 42 4.3.2 在不同氣氛下退火之影響 43 4.4 CuAl0.985Zn0.015O2奈米線之各項分析 44 4.4.1 CuAl0.985Zn0.015O2奈米線之元素組成與繞射分析 44 4.5 CuAlO2奈米線之紫外/可見光光譜(UV-vis) 45 4.6 CuAl0.985Zn0.015O2奈米線之紫外/可見光光譜(UV-vis) 47 4.7 CuAlO2奈米線之熱電分析 47 4.7.1 燒結體的相對密度與顯微結構 47 4.7.2 燒結體的溫度與導電率關係 48 4.7.3 燒結體的熱電性質量測 49 第五章 結語 51 參考文獻 53 附錄 92

    [1] R. D. M., "CRC Handbook of Thermoelectrics", CRC Press, Boca Raton, USA (1995).
    [2] G. S. Nolas, J. W. Sharp, H. J., "Goldsmid,Thermoelectrics: Basic Principles and New Materials Developments", Springer-Verlag, Heidelberg (2001).
    [3] K. Park, K. Ko, W. Seo, "Thermoelectric properties of CuAlO2", Journal of the European Ceramic Society,250, 2219-2222 (2005).
    [4] 張立德, 張玉剛, "一維納米材料中的新效應和新功能功", 功能材料2004年增刊,350,
    [5] M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin, T. Koga, "Low-dimensional thermoelectric materials", Physics of the Solid State,410, 679-682 (1999).
    [6] J. Heremans, C. Thrush, D. Morelli, "Thermopower enhancement in lead telluride nanostructures", Physical Review B,700, (2004).
    [7] J. Heremans, C. Thrush, D. Morelli, M.-C. Wu, "Thermoelectric Power of Bismuth Nanocomposites", Physical Review Letters,880, (2002).
    [8] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature,4130, 597-602 (2001).
    [9] T. Ishiguro, A. Kitazawa, N. Mizutani, M. Kato, "Single-crystal growth and crystal structure refinement of CuAlO2", Journal of Solid State Chemistry,400, 170-174 (1981).
    [10] K. Koumoto, H. Koduka, W.-S. Seo, "Thermoelectric properties of single crystal CuAlO2 with a layered structure", Journal of Materials Chemistry,110, 251-252 (2001).
    [11] T. J. Seebeck, "Magnetic polarization of metals and minerals", Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin,2650, (1823).
    [12] T. J. Seebeck, "Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen", Schweigger's J. Phy.,460, 101 (1826).
    [13] J. C. A. Peltier, "Nouvelles experiences sur la caloricite des courants electrique", Ann. Chim. Phys,560, 371 (1834).
    [14] W. Thomson, "An account of Carnot`s theory of the motive power of heat", Proc. R. Soc. Edinburgh,160, 541 (1849).
    [15] W. Thomson, "On a Mechanical Theory of Thermo-Electric Currents", Proceeding Of The Royal Society Of Edinburgh,910, (1851).
    [16] W. Thomson, "Account of researches in thermo-electricity", Philos. Mag.,50, 62 (1854).
    [17] W. Thomson, "On the electrodynamic qualities of metals", Philos. Trans. R. Soc. London,1460, 649 (1856).
    [18] F. Roeser, "Thermoelectric Thermometry", Appl. Phys.,110, 388 (1940).
    [19] P. W. Bridgeman, "The Thermodynamics of Electrical Phenomena in Metals", Dover, New York (1961).
    [20] H. B. Callen, "Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic and Galvanomagnetic Effects", Phys. Rev.,13490, (1948).
    [21] H. B. Callen, "Irreversible thermodynamics of thermoelectricity", Rev. Mod. Phys.,260, 237 (1954).
    [22] D. M. Rowe, "Thermoelectrics Handbook: Micro to Nano", CRC Press, New York (2006).
    [23] S. i. Yanagiya, N. Van Nong, J. Xu, N. Pryds, "The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate", Materials,30, 318-328 (2010).
    [24] I. Terasaki, Y. Sasago, K. Uchinokura, "Large thermoelectric power in NaCo2O4 single crystals", Physical Review B,560, R12685 (1997).
    [25] A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg, "Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions", Reviews of Modern Physics,680, 13 (1996).
    [26] G. Palsson, G. Kotliar, "Thermoelectric Response Near the Density Driven Mott Transition", Physical Review Letters,800, 4775 (1998).
    [27] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, I. Terasaki, "Specific-heat evidence for strong electron correlations in the thermoelectric material (Na,Ca)Co2O4", Physical Review B,600, 10580 (1999).
    [28] K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh, I. Terasaki, "Low thermal conductivity of the layered oxide (Na,Ca)Co2O4: Another example of a phonon glass and an electron crystal", Physical Review B,610, 12551 (2000).
    [29] M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, "High-temperature thermoelectric properties of (Zn1-xAlx)O", Journal of Applied Physics,790, 1816-1818 (1996).
    [30] K. Uehara, J. S. Tse, "Calculations of transport properties with the linearized augmented plane-wave method", Physical Review B,610, 1639 (2000).
    [31] K. Kishimoto, M. Tsukamoto, T. Koyanagi, "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering", Journal of Applied Physics,920, 5331 (2002).
    [32] Y.-M. Lin, M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires", Physical Review B,680, 075304 (2003).
    [33] F. A. Benko, F. P. Koffyberg, "Opto-electronic properties of CuAlO2", Journal of Physics and Chemistry of Solids,450, 57-59 (1984).
    [34] M. V. Lalic, J. Mestnik-Filho, A. W. Carbonari, R. N. Saxena, "Changes induced by the presence of Zn or Ni impurity at Cu sites in CuAlO2 delafossite", Solid State Communications,1250, 175-178 (2003).
    [35] M. S. Lee, T. Y. Kim, D. Kim, "Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal", Applied Physics Letters,790, 2028 (2001).
    [36] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, "P-type electrical conduction in transparent thin films of CuAlO2", Nature,3890, 939-942 (1997).
    [37] P. Poopanya, A. Yangthaisong, C. Rattanapun, A. Wichainchai, "Theoretical Study of Electronic Structure and Thermoelectric Properties of Doped CuAlO2", Journal of Electronic Materials,400, 987-991 (2011).
    [38] K. Park, K. Y. Ko, W. S. Seo, "Effect of partial substitution of Ca for Al on the microstructure and high-temperature thermoelectric properties of CuAlO2", Materials Science and Engineering: B,1290, 1-7 (2006).
    [39] T. Kurotori, S. Sugihara, "Thermoelectric Properties of CuAl1-xMxO2 (M=Zn, Ca)", MATERIALS TRANSACTIONS,460, 1462-1465 (2005).
    [40] K. Park, K. Ko, H. Kwon, S. Nahm, "Improvement in thermoelectric properties of CuAlO2 by adding Fe2O3", Journal of Alloys and Compounds,4370, 1-6 (2007).
    [41] N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizu, K. Kato, F. Kaneko, "Delafossite CuAlO2 films prepared by reactive sputtering using Cu and Al targets", Journal of Physics and Chemistry of Solids,640, 1671-1674 (2003).
    [42] J. Cai, H. Gong, "The influence of Cu∕Al ratio on properties of chemical-vapor-deposition-grown p-type Cu–Al–O transparent semiconducting films", Journal of Applied Physics,980, 033707 (2005).
    [43] S. Zhao, M. Li, X. Liu, G. Han, "Synthesis of CuAlO2 nanofibrous mats by electrospinning", Materials Chemistry and Physics,1160, 615-618 (2009).
    [44] Z.-M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites", Composites Science and Technology,630, 2223-2253 (2003).
    [45] G. Taylor, "Electrically Driven Jets", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,3130, 453-475 (1969).
    [46] D. H. Reneker, I. Chun, "<paper8.pdf>", Nanometre diameter fibres of polymer, produced by electrospinning,70, 216 (1996).
    [47] M. M. Bergshoef, G. J. Vancso, "Transparent Nanocomposites with Ultrathin, Electrospun Nylon-4,6 Fiber Reinforcement", Advanced Materials,110, 1362-1365 (1999).
    [48] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, "Compound Core-Shell Polymer Nanofibers by Co-Electrospinning", Adv. Mater.,150, 22 (2003).
    [49] C. J. Buchko, K. M. Kozloff, D. C. Martin, "Surface characterization of porous, biocompatible protein polymer thin films", Biomaterials,220, 1289 (2001).
    [50] Holten, "Lactic Acid: Properties and Chemistry of Lactic Acid and Derivatives.", Verlag Chemie., 221 (1971).
    [51] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes", Polymer,430, 4403-4412 (2002).
    [52] D. H. Reneker, H. Fong, "Polymer Nanofiber", Inc. American Chemical Society, (2003).
    [53] D. K. Kim, S. H. Park, B. C. Kim, B. D. Chin, S. M. Jo, D. Y. Kim, "Electrospun polyacrylonitrile based carbon nanofibers and their hydrogen storages", Macromolecular Research,130, 521-528 (2005).
    [54] S. S. Srinivasan, R. Ratnadurai, M. U. Niemann, A. R. Phani, D. Y. Goswami, E. K. Stefanakos, "Reversible hydrogen storage in electrospun polyaniline fibers", International Journal of Hydrogen Energy,350, 225-230 (2010).
    [55] Z. Kurban, A. Lovell, S. M. Bennington, D. W. K. Jenkins, K. R. Ryan, M. O. Jones, N. T. Skipper, W. I. F. David, "A Solution Selection Model for Coaxial Electrospinning and Its Application to Nanostructured Hydrogen Storage Materials", The Journal of Physical Chemistry C,1140, 21201-21213 (2010).
    [56] R. Chaim, Z. J. Shen, M. Nygren, "Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering (Vol 19, pg 2527, 2004)", Journal of Materials Research,190, 3715-3715 (2004).
    [57] R. Chaim, "Densification mechanisms in spark plasma sintering of nanocrystalline ceramics", Materials Science and Engineering: A,4430, 25-32 (2007).
    [58] M. Tokita, "Trends in Advanced SPS Spark Plasma Sintering Systems and Technology", J. Soc. Pow. Tech. Jap.,300, 790 (1993).
    [59] J. E. Garay, S. C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar, Z. A. Munir, "Electric current enhanced defect mobility in Ni3Ti intermetallics", Applied Physics Letters,850, 573-575 (2004).
    [60] M. Omori, "Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)", Materials Science and Engineering A,2870, 183-188 (2000).
    [61] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science,3200, 634-638 (2008).
    [62] W. Xie, X. Tang, Y. Yan, Q. Zhang, T. M. Tritt, "Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys", Applied Physics Letters,940, 102111 (2009).
    [63] 汪建民等人, "材料分析", 中國材料科學學會, (1998).
    [64] R. L. Weiher, R. P. Ley, "Optical Properties of Indium Oxide", Journal of Applied Physics,370, 299-302 (1966).
    [65] R. D. Shannon, C. T. Prewitt, "EFFECTIVE IONIC RADII IN OXIDES AND FLUORIDES", Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry,B 250, 925-& (1969).
    [66] D. Aston, D. Payne, A. Green, R. Egdell, D. Law, J. Guo, P. Glans, T. Learmonth, K. Smith, "High-resolution x-ray spectroscopic study of the electronic structure of the prototypical p-type transparent conducting oxide CuAlO2", Physical Review B,720, (2005).
    [67] Y. Kumekawa, M. Hirai, Y. Kobayashi, S. Endoh, E. Oikawa, T. Hashimoto, "Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2", Journal of Thermal Analysis and Calorimetry,990, 57-63 (2010).
    [68] H. Yanagi, S.-i. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, "Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2", Journal of Applied Physics,880, 4159-4163 (2000).
    [69] W. Lan, W. Cao, M. Zhang, X. Liu, Y. Wang, E. Xie, H. Yan, "Annealing effect on the structural, optical, and electrical properties of CuAlO2 films deposited by magnetron sputtering", Journal of Materials Science,440, 1594-1599 (2009).
    [70] J. Cai, H. Gong, "The influence of Cu/Al ratio on properties of chemical-vapor-deposition-grown p-type Cu--Al--O transparent semiconducting films", Journal of Applied Physics,980, 033707 (2005).
    [71] A. N. Banerjee, K. K. Chattopadhyay, "Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films", Journal of Applied Physics,970, 084308 (2005).
    [72] G. Li, X. Zhu, H. Lei, H. Jiang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S. Dai, "Preparation and characterization of CuAlO2 transparent thin films prepared by chemical solution deposition method", Journal of Sol-Gel Science and Technology,530, 641-646 (2010).
    [73] M. S. Lee, T. Y. Kim, D. Kim, "Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal", Applied Physics Letters,790, 2028-2030 (2001).
    [74] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, "Introduction to Ceramics(2nd ed.)", John Wiley & Sons, New York, 519 (1976).
    [75] A. N. Banerjee, R. Maity, P. K. Ghosh, K. K. Chattopadhyay, "Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films", Thin Solid Films,4740, 261-266 (2005). 

    下載圖示 校內:2013-08-03公開
    校外:2013-08-03公開
    QR CODE