簡易檢索 / 詳目顯示

研究生: 王盈乃
Wang, Ying-Nai
論文名稱: 表皮生長因子誘導角質細胞角質素十六基因表現之轉錄調控
Transcriptional Regulation of Epidermal Growth Factor-Induced Keratin 16 Gene Expression in Keratinocytes
指導教授: 張文昌
Chang, Wen-Chang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 97
中文關鍵詞: 表皮生長因子角質素十六
外文關鍵詞: epidermal growth factor, keratin 16
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在一些與細胞過度增生有關的皮膚疾病 (例如牛皮癬) 中,角質細胞中的角質素十六 (keratin 16) 呈現大量表現。因此,將keratin 16 歸類為與疾病形成相關的角質素。根據之前的研究報告顯示,表皮生長因子 (EGF) 或甲型轉形生長因子 (TGF-α)會促進keratin 16 的啟動區活性,並證實其EGF 反應區間是位於啟動區上-212 至-192bp。而除了此EGF 反應區間外,位於啟動區上-127 至-121 bp 之Sp1 結合序列,對於keratin 16 啟動區之基本轉錄活性亦為必須的。本研究目的為更進一步探討在人類角質細胞株HaCaT 中,EGF 如何調控keratin 16 之基因表現,且有哪些轉錄因子參與中。首先證實在HaCaT 細胞中,keratin 16 mRNA 及蛋白質表現會隨著EGF 處理時間增加而增加。利用不同5′端段切長度的keratin 16 啟動區之報告基因來做分析,我們發現EGF 誘導keratin 16 基因表現之反應區間是位於啟動區上-162 至-114 bp,此結果與先前學者所發表的區間位置並不相同。進一步將此區間內Sp1 結合序列 (-127 至-122 bp) 及AP1 結合序列 (-148 至-142 bp) 作雙點突變修飾,結果顯示EGF 所誘導的keratin 16 啟動區活性會明顯地受到抑制。另外透過Ras 蛋白質的活化所誘導keratin 16 基因表現的反應位置與上述之EGF 反應位置相同,由此結果得知在EGF 誘導keratin 16 基因表現之訊息傳遞路徑中,Ras 的活化參與著重要的角色。接著利用DNA親和力沉澱分析法 (DNA affinity precipitation assay) 分析啟動區上核蛋白質之結合情形。我們發現在HaCaT 細胞及果蠅SL2 細胞中,Sp1 核蛋白質會結合於此Sp1 結合序列上,而c-Jun 核蛋白質會透過與Sp1 核蛋白質進行交互作用,進而間接地結合於此Sp1 結合序列上。我們進一步以cotransfection assay 分析其功能上的角色,實驗證明此二轉錄因子c-Jun 及Sp1 對於keratin 16 基因表現呈現協同性的增加。另外分別送入不同劑量的coactivators (p300 或CBP),由結果顯示p300/CBP 皆會對c-Jun/Sp1 complex 誘導keratin 16 的基因表現呈現加成性的增加,且EGF 誘導keratin 16 啟動區活性會被已知可阻斷p300 作用之病毒蛋白質E1A 所抑制,證實p300/CBP 確實參與在EGF 誘導keratin 16 之基因調控路徑中。由以上結果得知,keratin 16 啟動區之-162至-114 bp 區間中,Sp1 結合序列及AP1 結合序列為EGF 誘導keratin 16 基因表現之最重要位置,且Sp1 協同c-Jun 及p300/CBP 共同調控EGF 誘導keratin 16 的基因表現。接著我們想要進一步釐清,EGF 誘導keratin 16 基因表現需經由哪些訊息傳遞路徑,且所參與的核蛋白質是否需透過轉譯後修飾機轉 (post-translational modification)來調控此系統。由結果顯示,在HaCaT 細胞中,EGF 會活化ERK 及JNK,進而促使c-Jun 表現增加。而EGF 誘導keratin 16 基因的表現主要是透過Ras-MEK-ERK 訊息傳遞路徑,只有少部分經由JNK 路徑。另一方面,在HaCaT 細胞中,c-Jun 核蛋白質NH2 端上的Ser63 及Ser73 位置會受到EGF 磷酸化。然而,利用一系列c-Jun NH2端的突變質體做功能上的分析,我們發現c-Jun 的NH2 端對於EGF 誘導keratin 16 基因表現是不需要的。接著將c-Jun COOH 端之三個可能受乙醯化的lysines 位置突變成arginines 的質體myc-c-JunK3R 送入細胞中,我們發現此突變質體無法增加EGF 所誘導的keratin 16 基因表現,由結果顯示,c-Jun COOH 端之乙醯化修飾作用在此調控系統中至少參與著一部份的角色。有趣的是,藉由染色質免疫沉澱法(Chromatin Immunoprecipitation) 和DNA 親和力沉澱分析法,我們發現EGF 會透過ERK 訊息傳遞路徑而促使p300 聚集至keratin 16 啟動區。綜合以上實驗結果得知,經由ERK 及JNK 活化所增加的c-Jun 表現量,對於調控EGF 誘導keratin 16 基因表現是需要的。另外透過EGF 刺激ERK 的活化,會增加p300 聚集至keratin 16 啟動區,並進而調控keratin 16 基因表現,且此調控機制有一部份可能是透過增加c-Jun COOH 端之乙醯化所致。

      Overexpression of keratin 16 has been observed in keratinocytes in those skin diseases characterized by hyperproliferation such as psoriasis. Therefore, keratin 16 is usually referred to as a disease-associated keratin. In studies of gene regulation of keratin 16, it has been reported previously that the hyperproliferation-inducing agents, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), induce keratin 16 expression in normal human epidermal keratinocytes and found that an EGF-responsiveelement (EGF-RE), located at the promoter ranged from -212 to -192 bp, is required for EGF and TGF-α responses. Furthermore, in the study of basal expression of keratin 16 in keratinocytes, in addition to EGF-RE, an Sp1 binding site located in the promoter range from -127 to -121 bp is also essential. The aim of the present work is to further characterize the EGF response region in the human keratin 16 gene promoter in a spontaneously immortalized keratinocyte (HaCaT) cell line. We found that EGF increased the expression of keratin 16 mRNA and protein synthesis in a time-dependent manner in HaCaT cells. Reporter assays revealed that the EGF response region was in the range of -162 to -114 bp, which was distinct from EGF-RE reported previously by other investigators. Disruption of the Sp1 site (-127 to -122 bp) and the AP1 site (-148 to -142 bp) of the keratin 16 promoter by site-directed mutagenesis significantly inhibited keratin 16 promoter activity induced by EGF. Furthermore, keratin 16 gene expression induced by Ras activation was also regulated in the same manner as the EGF response. By using the DNA affinity precipitation assay in HaCaT and SL2 cells, Sp1 directly interacted with the Sp1 site of the promoter, and c-Jun and c-Fos precipitated with the Sp1 oligonucleotide was attributable to the interaction between the Sp1 and AP1 proteins. Moreover, cotransfection assays revealed that Sp1 acted synergistically with c-Jun to activate keratin 16. The coactivators p300/CBP could collaborate with Sp1 and c-Jun in the activation of keratin 16 promoter, and EGF-induced promoter activation was blocked by the viral oncoprotein E1A. Taken together, these results suggest that Sp1 and AP1 sites in the essential promoter region are critical for EGF response, and Sp1 showed a functional cooperation with c-Jun and coactivators p300/CBP in driving the transcriptional regulation of EGF-induced keratin 16 gene expression. In addition, we further investigated the signaling networks relaying EGF stimulation of keratin 16 gene expression and the underlying regulatory mechanism, such as post-translational modification, of those nuclear factors involved in the transcriptional control of keratin 16 upon EGF treatment. Evidences obtained from the present study showed that treatment of HaCaT cells with EGF resulted in a rapid phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK), and subsequent induction of c-Jun. The stimulated expression of keratin 16 by EGF was mediated mainly through the Ras-MEK-ERK signaling pathway, but partly through the JNK cascade. On the other hand, Ser63 and Ser73 on c-Jun NH2-terminal transactivation domain could be phosphorylated in HaCaT cells treated with EGF. Nevertheless, we found surprisingly that the c-Jun NH2-terminus was not required for EGF-induced expression of keratin 16. The activation of keratin 16 promoter by EGF treatment could not be enhanced by overexpression of myc-c-JunK3R, in which three putative acetylation lysine residues on the c-Jun COOH-terminus were all mutated into arginines, indicating that c-Jun acetylation might partially play a functional role in this system. Interestingly, by using a chromatin immunoprecipitation assay and a DNA affinity precipitation assay, EGF treatment was found to up-regulate p300 recruitment through ERK signaling to the promoter region in regulating keratin 16 transcriptional activity. In conclusion, these results strongly suggest that c-Jun biosynthesis, stimulated through ERK and JNK activation, plays an essential role in regulating keratin 16 gene expression by EGF. Recruitment of p300 to the keratin 16 gene promoter was due to EGF-activation of the ERK signaling pathway, and p300 mediated and regulated EGF-induced keratin 16 gene expression at least in part through multiple mechanisms including a selective acetylation of c-Jun COOH-terminus.

    考試合格證明………………………………………………………………………………I Abstract……………………………………………………………………………………II Abstract in Chinese………………………………………………………………………V Acknowledgement……………………………………………………………………………VII Index…………………………………………………………………………………………XI Abbreviations………………………………………………………………………………XIII Introduction I. Keratinocytes and Keratins………………………………………………………1 II. MAPK Signaling Cascades…………………………………………………………3 III. c-Jun of AP1 Protein Family……………………………………………………4 IV. Sp1 of Sp Protein Family…………………………………………………………5 V. Functional Role of p300/CBP………………………………………………………6 VI. Aim……………………………………………………………………………………7 Materials and Methods I. Materials…………………………………………………………………………21 II. Plasmids…………………………………………………………………………27 III. Methods…………………………………………………………………………28 1. Cell Culture and EGF Treatment……………………………………………28 2. Reverse Transcription-PCR……………………………………………………28 3. Preparation of Cell Lysates…………………………………………………29 4. Preparation of Nuclear Extracts……………………………………………29 5. Western Blots……………………………………………………………………30 6. Chromatin Immunoprecipitation Assay………………………………………30 7. DNA Affinity Precipitation Assay…………………………………………31 8. DNA Gel Mobility Shift Assay………………………………………………32 9. Plasmid Construction…………………………………………………………32 10. Transfection with LipofectAMINE and Reporter Gene Assay……………33 11. Transfection by the Calcium Phosphate Method…………………………34 Results and Discussion Chapter 1 I. Effect of gene expression of human keratin 16 upon EGF treatment 1. Stimulation of keratin 16 mRNA and protein expression by EGF in HaCaT cells…………………………………………………………………………………35 2. Stimulation of keratin 16 protein expression by EGF in EGFR-stable transfectant HaCaT-EGFR1 cells………………………………………………………35 3. Identification of the promoter sequence of human keratin 16 gene………36 4. Promoter activation of the human keratin 16 gene by EGF…………………36 II. Analysis of the EGF-responsive region in the human keratin 16 gene promoter 1. Essential role of Ras on EGF-induced promoter activation of the keratin 16 gene…………………………………………………………………………36 2. Keratin 16 promoter analysis of EGF and Ha-ras responses………………37 III. Identification of the transcription factors acting on the EGF-responsive region 1. Effects of EGF and Ha-ras on the expression of Sp1, c-Jun, and c-Fos……38 2. Identification of the nuclear factors involved in the expression of the keratin 16 gene………………………………………………………………………………39 IV. Functional roles of c-Jun, Sp1, and p300/CBP involved in this regulatory system 1. Keratin 16 promoter analysis of c-Jun response…………………………………42 2. Cooperation of Sp1 and c-Jun with p300/CBP in up-regulation of the keratin 16 promoter…………………………………………………………………………43 V. Discussion…………………………………………………………………………………44 Chapter 2 I. Study on the signaling networks relaying EGF stimulation of keratin 16 gene expression 1. Activation of ERK and JNK by EGF……………………………………………………62 2. Effect of ERK and JNK inhibitors on EGF-induced expression of keratin 16………………………………………………………………………………………62 II. Essential role of c-Jun in regulating EGF-induced keratin 16 gene expression 1. Effect of ERK and JNK inhibitors on EGF-induced expression and phosphorylation of c-Jun……………………………………………………………………63 2. No requirement of c-Jun NH2-terminal phosphorylation in EGF-induced expression of keratin 16……………………………………………………………………64 3. Involvement of acetylation on c-Jun COOH-terminus in regulating keratin 16 expression induced by EGF……………………………………………………65 III. Pivotal role of p300 recruitment through ERK signaling pathway in EGF-induced gene expression of human keratin 16 1. DNA affinity precipitation assay of nuclear factors recruited to the keratin 16 promoter upon EGF treatment…………………………………………………66 2. Chromatin immunoprecipitation assay of p300 recruited to the keratin 16 promoter upon EGF treatment………………………………………………………………67 3. Effect of E1A on p300 recruitment to the keratin 16 essential promoter region by EGF……………………………………………………………………………………68 IV. Discussion…………………………………………………………………………………68 Conclusion………………………………………………………………………………83 References………………………………………………………………………………85 Publications……………………………………………………………………………95 Curriculum Vitae………………………………………………………………………96

    Abate, C., and Curran, T. Encounters with Fos and Jun on the road to AP-1. Semin. Cancer Biol. 1, 19-26, 1990

    Alonso, L., and Fuchs, E. Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. U. S. A. 100, 11830-11835, 2003

    Ammanamanchi, S., Freeman, J. W., and Brattain, M. G. Acetylated Sp3 is a
    transcriptional activator. J. Biol. Chem. 278, 35775-35780, 2003

    Arakawa, T., Nakamura, M., Yoshimoto, T., and Yamamoto, S. The transcriptional
    regulation of human arachidonate 12-lipoxygenase gene by NFκB/Rel. FEBS Lett. 363, 105-110, 1995

    Banks, E. B., Crish, J. F., Welter, J. F., and Eckrt, R. L. Characterization of human involucrin promoter distal regulatory region transcriptional activator elements-a role for Sp1 and AP1 binding sites. Biochem. J. 331, 61-68, 1998

    Bannister, A. J., Oehler, T., Wilhelm, D., Angel, P., and Kouzarides, T. Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene 11, 2509-2514, 1995

    Brembeck, F. H., and Rustgi, A. K. The tissue-dependent keratin 19 gene transcription is regulated by GKLF/KLF4 and Sp1. J. Biol. Chem. 275, 28230-28239, 2000

    Chan, H. M., and La Thangue, N. B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. cell Sci. 114, 2363-2373, 2001

    Chang, L., and Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37-40, 2001

    Chen, B. K., and Chang, W. C. Functional interaction between c-Jun and promoter factor Sp1 in epidermal growth factor-induced gene expression of human 12(S)-lipoxygenase. Proc. Natl. Acad. Sci. U. S. A. 97, 10406-10411, 2000

    Chen, B. K., Kung, H. C., Tsai, T. Y., and Chang, W. C. Essential role of
    mitogen-activated protein kinase pathway and c-Jun induction in epidermal growth
    factor-induced gene expression of human 12-lipoxygenase. Mol. Pharmacol. 57,
    153-161, 2000

    Chen, B. K., Tsai, T. Y., Huang, H. S., Chen, L. C., Chang, W. C., Tsai, S. B., and Chang, W. C. Functional role of extracellular signal-regulated kinase activation and c-Jun induction in phorbol ester-induced promoter activation of human 12(S)-lipoxygenase gene. J. Biomed. Sci. 9, 156-165, 2002

    Chen, L., Glover, J. N., Hogan, O. G., Rao, A., and Harrison, S. C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature
    392, 42-48, 1998

    Corden, L. D., and McLean, W. H. Human keratin diseases: hereditary fragility of
    specific epithelial tissues. Exp. Dermatol. 5, 297-307, 1996

    Courey, A. J., and Tjian, R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887-898, 1988

    Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., and Davis, R. J. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267, 682-685, 1995

    Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell, 103, 239-252, 2000

    Deng, W. G., Zhu, Y., and Wu, K. K. Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-α-induced cyclooxygenase-2 promoter activation. J. Biol. Chem. 278, 4770-4777, 2003

    Di Nocera, P. P., and Dawid, I. B. Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 80, 7095-7098, 1983

    Elder, J. T., Fisher, G. J., Lindguist, P. B., Bennett, G. L., Pittelkow, M. R., Coffey, R. J., Ellingsworth, L., Derynck, R., and Voorhees, J. J. Overexpression of transforming growth factor alpha in psoriatic epidermis. Science 243, 811-814, 1989

    Feig, L. A., and Cooper, G. M. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8, 3235–3243, 1988

    Feig, L. A., Urano, T., and Cantor, S. Evidence for a Ras/Ral signaling cascade. Trends Biochem. Sci. 21, 438–441, 1996

    Freedberg, I. M., Tomic-Canic, M., Komine, M., and Blumenberg, M. Keratins and the keratinocytes activation cycle. J. Invest. Dermatol. 116, 633-640, 2001

    Fuchs, E.: Epidermal differentiation: the bare essentials. J. Cell. Biol. 111, 2807-2814, 1990

    Fuchs, E., and Byrne, C. The epidermis: rising to the surface. Curr. Opin. Genet. Dev. 4, 725-736, 1994

    Fuchs, E., and Weber, K. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345-382, 1994

    Gill, G., Pascal, E., Tseng, Z. H., and Tjian, R. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. U. S. A. 91, 192-196, 1994

    Glover, J. N., and Harrison, S. C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373, 257-261, 1995

    Guan, K. L. The mitogen activated protein kinase signal transduction pathway: from the cell surface to the nucleus. Cell. Signal. 6, 581-589, 1994

    Gupta, P., and Prywes, R. ATF1 phosphorylation by the ERK MAPK pathway is required for epidermal growth factor-induced c-jun expression. J. Biol. Chem. 277, 50550-50556, 2002

    Hagemann, C., and Blank, J. L. The ups and downs of MEK kinase interactions. Cell. Signal. 13, 863-875, 2001

    Han, L., and Colicelli, J. A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol. Cell. Biol. 15, 1318–1323, 1995

    Hazzalin C. A., and Mahadevan L. C. MAPK-regulated transcription: a continuously
    variable gene switch? Nat. Rev. Mol. Cell Biol. 3, 30-40, 2002

    Higuchi, R., Krummel, B., and Saiki, R. K. A general method for in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351-7367, 1988

    Hill, S. M. Receptor crosstalk: Communication through cell signaling pathways. Anat. Rec. 253, 42-48, 1998

    Hirano, F., Tanaka, H., Hirano, Y., Hiramoto, M. Handa, H., Makino, I., and Scheidereit, C. Functional interference of Sp1 and NF-κB through the same DNA binding site. Mol. Cell. Biol. 18, 1266-1274, 1998

    Hu, P. P., Havat, B. L., Hook, S. S., Shen, X., Wang, X. F., and Means, A. R. c-Jun enhancement of cyclic adenosine 3′,5′-monophosphate response element-dependent transcription induced by transforming growth factor-β is independent of c-Jun binding to DNA. Mol. Endocrinol. 13, 2039-2048, 1999

    Jiang, C. K., Magnaldo, T., Ohtsuki, M., Freeberg, I. M., Bernerd, F., and Blumenberg, M. Epidermal growth factor and transforming growth factor α specifically induce the activation- and hyperproliferation-associated keratin 6 and 16. Proc. Natl. Acad. Sci. U. S. A. 90, 6786-6790, 1993

    Karin, M., Liu, Zg., and Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240-246, 1997

    Komine, M., Rao, L. S., Kaneko, T., Tomic-Canic, M., Tamaki, K., Freedberg, I. M., and Blumenberg, M. Inflammatory versus proliferative process in epidermis. J. Biol. Chem. 275, 32077-32088, 2000

    Komine, M., Rao, L. S., Freedberg, I. M., Simon, M., Milisavljevic, V., and Blumenberg, M. Interleukin-1 induces transcription of keratin K6 in human epidermal keratinocytes. J. Invest. Dermatol. 116, 330-338, 2001

    Kuriyama, M., Harada, N., Kuroida, S., Yammato, T., Nakafuku, M., Iwamatsu, A.,
    Yamamoto, D., Prasad, R., Croce, C., Canaani, E., and Kaibuchi, K. Identification of AF-6 and canoe as putative targets for Ras. J. Biol. Chem. 271, 607–610, 1996

    Lee, J. S., Galvin, K. M., and Shi, Y. Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proc. Natl. Acad. Sci. U. S. A. 90, 6145-6149, 1993

    Lee, J. S., See, R. H., Deng, T., and Shi, Y. Adenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16, 4312-4326, 1996

    Leigh, I. M., Navsaria, H., Purkis, P. E., Mckay, I. A., Bowden, P. E., and Riddle, P. N. Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br. J. Dermatol. 133, 501-511, 1995

    Lin, A., Frost, J., Deng, T., Smeal, T., al-Alawi, N., Kikkawa, U., Hunter, T., Brenner, D., and Karin, M. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 70, 777-789, 1992

    Lin, S. Y., Black, A. R., Kostic, D., Pajovic, S., Hoover, C. N., and Azizkhan, J. C. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol. Cell. Biol. 16, 1668-1675, 1996

    Liu, Y. W., Arakawa, T., Yamamoto, S., and Chang, W. C. Transcriptional activation of human 12-lipoxygenase gene promoter is mediated through Sp1 consensus sites in A431 cells. Biochem. J. 324, 133-140, 1997

    Lloyd, C., Yu, Q. C., Chang, J., Turksen, K., Degenstein, L., Hutton, E., and Fuchs, E. The basal keratin network of stratified squamous epithelia: Defining K15 function in the absence of K14. J. Cell Biol. 129, 1329-1344, 1995

    Luo, R. X., Postigo, A. A., and Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463-473, 1998

    Machesney, M., Tidman, N., Waseem, A., Kirby, L., and Leigh, I. Activated keratinocytes in the epidermis of hypertrophic scars. Am. J. Pathol. 152, 1133-1141, 1998

    Magnaldo, T., Bernerd, F., Freeberg, I. M., Ohtsuki, M., and Blumenberg, M.
    Transcriptional regulators of expression of K#16, the disease-associated keratin. DNA Cell Biol. 12, 911-923, 1993

    Mansour, S. J., Matten, W. T., Hermann, A. S., Candia, J. M., Rong, S., Fukasawa, K., Vande, G. F., and Ahn, N. G. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966-970, 1994

    Matsuzawa, A., and Ichijo, H. Molecular mechanisms of the decision between life and death: regulation of apoptosis by apoptosis signal-regulating kinase 1. J. Biochem. 130, 1-8, 2001

    May, G. H., Allen, K. E., Clark, W., Funk, M., and Gillespie, D. A. Analysis of the
    interaction between c-Jun and c-Jun N-terminal kinase in vivo. J. Biol. Chem. 273, 33429-33435, 1998

    McLean, W. H. I., Rugg, E. L., Lunny, D. P., Morley, S. M., Lane, E. B., Swensson, O., Dopping-Hepenstal, P. J. C., Griffiths, W. A. D., Eady, R. A. J., Higgins, C., Navsaria, H. A., Leigh, I. M., Stachan, T., Kunkeler, L., and Munro, C. S. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nature Genetics. 9, 273-278, 1995

    Moodie, S. A., Willumsen, B. M., Weber, M. J., and Wolfman, A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658-1661, 1993

    Morton, S., Davis, R. J., McLaren, A., and Cohen, P. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J. 22, 3876-3886, 2003

    Nanney, L. B., Stoscheck, C. M., Magid, M., and King, L. E. Jr. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis. J. Invest. Dermatol. 86, 260-265, 1986

    Ogryzko, V. V., Schiltz, R. L., Russsanova, V., Howard, B. H., and Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 9553-9559, 1996

    Papavassiliou, A. G., Treier, M., and Bohmann, D. Intramolecular signal transduction in c-Jun. EMBO J. 14, 2014-2019, 1995

    Paramio, J. M., Casanova, M. L., Segrelles, C., Mittnacht, S., Lane, E. B., and Jorcano, J. L. Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol. 19, 3086-3094, 1999

    Pulverer, B. J., Kyriakis, J. M., Avruch, J., Nikolakaki, E., and Woodgett, J. R.
    Phosphorylation of c-jun mediated by MAP kinases. Nature 353, 670-674, 1991

    Reddy, S. P. M., and Mossman, B. T. Role and regulation of activator protein-1 in
    toxicant-induced responses of the lung. Am. J. Physiol. Lung. Cell Mol. Physiol. 283, L1161-L1178, 2002

    Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J. Phosphatidylinositol- 3-OH kinase as a direct target of Ras. Nature 370, 527–552, 1994

    Rossi, A., Jang, S-I., Ceci, R., Stetnert, P. M., and Markova, N. G. Effect of AP1 transcription factors on the regulation of transcription in normal human epidermal keratinocytes. J. Invest. Dermatol. 110, 34-40, 1998

    Sano, Y., Tokitou, F., Dai, P., Maekawa, T., Yamamoto, T., and Ishii, S. CBP alleviates the intramolecular inhibition of ATF-2 function. J. Biol. Chem. 273, 29098-29105, 1998

    Schaeffer, H. J., and Weber, M. J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435-2444, 1999

    Shaulian, E., and Karin, M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-136, 2002

    Shikama, N., Lyon, J., and La Thangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230-236, 1997

    Smith, C. L., Onate, S. A., Tsai, M. J., and O′Malley, B. W. CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptordependent transcription. Proc. Natl. Acad. Sci. U. S. A. 93, 8884-8888, 1996

    Somasundaram, K., and El-Deiry, W. S. Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region. Oncogene 14,1047-1057, 1997

    Sterner, D. E., and Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435-459, 2000

    Suske, G. The Sp-family of transcription factors. Gene 238, 291-300, 1999

    Suzuki, T., Kimura, A., Nagai, R., and Horikoshi, M. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 5, 29-41, 2000

    Van Aelst, L., White, M. A., and Wigler, M. H. Ras partners. Cold Spring Harbor Symp. Quant. Biol. 59, 181–186, 1994

    Vojtek, A. B., and Der, C. J. Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273, 19925-19928, 1998

    Vries, R .G. J., Prudenziati, M., Zwartjes, C., Verlaan, M., Kalkhoven, E., and Zantema, A. A specific lysine in c-Jun is required for transcriptional repression in E1A and is acetylated by p300. EMBO J. 20, 6095-6103, 2001

    Velu, T. J., Beguinot, L., Vass, W. C., Zhang, K., Pastan, I., and Lowy, D. R. Retroviruses expressing different levels of the normal epidermal growth factor receptor: biological properties and new bioassay. J. Cell. Biochem. 39, 153-166, 1989

    Welter, J. F., Crish, J. F., Agarwal, C., and Eckert, R. L. Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J. Biol. Chem. 270, 12614-12622, 1995

    Wetzels, R. H. W., Kuijpers, H. J. H., Lane, E. B., Leigh, I. M., Troyanovsky, S. M., Holland, R., Haelst, U. J. G. M. van., and Ramaekers, F. C. S. Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am. J. Pathol. 138, 751-763, 1991

    Xiao, H., Hasegawa, T., and Isobe, K. p300 collaborates with Sp1 and Sp3 in
    p21(waf1/cip1) promoter activation induced by histone deacetylase inhibitor. J. Biol. Chem. 275, 1371-1376, 2000

    Yatani, A., Okabe, K., Polakis, P., Halenbeck, R., McCormick, F., and Brown, A. M. Ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell 61, 769–776, 1990

    Yuan, W., Condorelli, G., Caruso, M., Felsani, A., and Giordano, A. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271, 9009-9013, 1996

    Zhang, K., Chaillet, J. R., Perkins, L. A., Halazonetis, T. D., and Perrimon, N. Drosophila homolog of the mammalian jun oncogene is expressed during embryonic development and activates transcription in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 87, 6281-6285, 1990

    Zhu, Y., Saunders, M. A., Yeh, H., Deng, W. G., and Wu, K. K. Dynamic regulation of cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer-binding proteins. J. Biol. Chem. 277, 6923-6928, 2002

    下載圖示 校內:立即公開
    校外:2004-08-09公開
    QR CODE