簡易檢索 / 詳目顯示

研究生: 許家禎
Hsu, Chia-Chen
論文名稱: 第三代半導體元件與材料模擬和高效能第一原理計算
Third-Generation Semiconductor Devices and Materials Simulation with High-Performance First-Principle Calculations
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 第一原理計算高效能運算第三代半導體材料元件模擬
外文關鍵詞: First-principles calculations, high performance computing (HPC), third-generation semiconductor materials, component simulations
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 誌謝 i 摘要 ii Extended Abstract iii 目錄 vii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1前言 1 1.2研究動機 1 第二章 基礎理論 4 2.1第一原理計算(First-principle Calculation) 4 2.2薛丁格波動方程式 4 2.2.1波動方程式 4 2.2.2波函數物理義意 6 2.3 Hartree ̵̶ Fock近似 7 2.4密度泛函理論(Density Functional Theory, DFT) 9 2.5元件架構介紹 12 2.5.1金屬氧化物半導體場效電晶體(MOSFET) 12 2.5.2鰭式場效電晶體(FinFET) 13 2.5.3環繞閘極與多橋通道場效電晶體(GAAFET & MBCFET) 14 2.5.4垂直傳輸場效電晶體(VTFET) 15 2.6載子傳輸現象 16 2.6.1載子飄移 16 2.6.2載子擴散 16 2.6.3連續方程式 17 第三章 軟硬體環境建置 19 3.1 模擬環境介紹 19 3.1.1 模擬硬體設備 19 3.1.2 選擇理由及原因 20 3.2 VASP軟體建置 20 3.2.1 VASP軟體介紹 20 3.2.2 VASP軟體流程圖 21 3.2.3 VASP INPUT介紹 22 3.2.4 VASP OUTPUT介紹 27 3.2.5 VASP選擇理由及優勢 29 3.2.6 主程式安裝及建置 29 3.2.7 輔助程式安裝及建置 32 第四章 第三代半導體基本性質分析及測試模擬優化 34 4.1 第三代半導體基本性質分析 34 4.1.1 碳化矽的物性與特徵 34 4.1.2 碳化矽功率元件的特徵 35 4.2 6H-SiC模擬分析 35 4.2.1 6H-SiC性質及特性 35 4.2.2 6H-SiC晶體VASP模擬 37 4.3 模擬優化 39 4.3.1 MPI平行化軟體 39 4.3.2 參數調整 47 4.3.3 容器(container) 50 4.3.4 其他優化方法 53 第五章 結論 55 5.1 大中小系統比較圖 55 5.2 模擬能帶之誤差 58 5.3與其他計算方法差異與比較 58 5.4加速貢獻 59 5.5總結 59 第六章 未來與展望 60 6.1 VASP前後端支援 60 參考文獻 62

    [1]. Dennard, Robert H., et al. "Design of ion-implanted MOSFET's with very small physical dimensions." IEEE Journal of Solid-State Circuits 9.5 (1974): 256-268.
    [2]. International Roadmap for Devices and systems 2017 Edition More Moore. Available online: https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf .
    [3]. Dawn of The Data-Centric Era. Available online: https://semiengineering.com/dawn-of-the-data-centric-era/ .
    [4]. Radamson, Henry H., et al. "The challenges of advanced CMOS process from 2D to 3D." Applied Sciences 7.10 (2017): 1047.
    [5]. Lim, Sangwoo. "Toward the Surface Preparation of InGaAs for the Future CMOS Integration." Solid State Phenomena. Vol. 282. Trans Tech Publications Ltd, 2018.
    [6]. Radamson, Henry, and Lars Thylén. Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group IV Elements. Academic Press, 2014.
    [7]. Radamson, Henry H., et al. "State of the art and future perspectives in advanced CMOS technology." Nanomaterials 10.8 (2020): 1555.
    [8]. Cheng, K., et al. "Bottom oxidation through STI (BOTS)—A novel approach to fabricate dielectric isolated FinFETs on bulk substrates." 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers. IEEE, 2014.
    [9]. Zhang, Qingzhu, et al. "FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin." 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016.
    [10]. Ma, Xiaolong, et al. "Self-aligned fin-on-oxide (FOO) FinFETs for improved SCE immunity and multi-VTH operation on Si substrate." ECS Solid State Letters 4.4 (2015): Q13.
    [11]. Hou, Zhaozhao, et al. "Fabrication and characterization of p-channel charge trapping type FOI-FinFET memory with MAHAS structure." ECS Journal of Solid State Science and Technology 6.10 (2017): Q136.
    [12]. Xu, Weijia, et al. "Novel 14-nm scallop-shaped FinFETs (S-FinFETs) on bulk-Si substrate." Nanoscale research letters 10.1 (2015): 1-7.
    [13]. Mertens, Hans, et al. "Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates." 2016 IEEE Symposium on VLSI Technology. IEEE, 2016.
    [14]. Lauer, Isaac, et al. "Si nanowire CMOS fabricated with minimal deviation from RMG FinFET technology showing record performance." 2015 Symposium on VLSI Technology (VLSI Technology). IEEE, 2015.
    [15]. Zhang, Qinzhu, et al. "Novel GAA Si nanowire p-MOSFETs with excellent short-channel effect immunity via an advanced forming process." IEEE Electron Device Letters 39.4 (2018): 464-467.
    [16]. Hartree, Douglas Rayner, and William Hartree. "Self-consistent field, with exchange, for beryllium." Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 150.869 (1935): 9-33.
    [17]. Hartree, Douglas R. "The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods." Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 24. No. 1. Cambridge university press, 1928.
    [18]. Slater, John C. "Note on Hartree's method." Physical Review 35.2 (1930): 210.
    [19]. Fock, Vladimir. "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems." Zeitschrift für Physik 61.1-2 (1930): 126-148.
    [20]. Hohenberg, P., and W. J. P. R. Kohn. "Density functional theory (DFT)." Phys. Rev 136 (1964): B864.
    [21]. Thomas, Llewellyn H. "The calculation of atomic fields." Mathematical proceedings of the Cambridge philosophical society. Vol. 23. No. 5. Cambridge University Press, 1927.
    [22]. Fermi, Enrico. "Statistical method to determine some properties of atoms." Rend. Accad. Naz. Lincei 6.602-607 (1927): 5.
    [23]. Hohenberg, P., and W. J. P. R. Kohn. "Density functional theory (DFT)." Phys. Rev 136 (1964): B864.
    [24]. Hohenberg, Pierre, and Walter Kohn. "Inhomogeneous electron gas." Physical review 136.3B (1964): B864.
    [25]. Kohn, Walter, and Lu Jeu Sham. "Self-consistent equations including exchange and correlation effects." Physical review 140.4A (1965): A1133.
    [26]. Bhole, Mayur, Aditya Kurude, and Sagar Pawar. "Finfet-benefits, drawbacks and challenges." Int. J. of Engineering, Sciences and Research Technology 2 (2013): 3219-3222.
    [27]. Rakesh Yerragopu, Dr. P. Aruna Priya, and J. K. Kasthuribha, "Modeling, optimization and comprehensive comparative analysis of 7nm FinFET and 7nm GAAFET devices", AIP Conference Proceedings 2277, 020003 (2020) https://doi.org/10.1063/5.0027162
    [28]. Hafner, Jürgen. "Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond." Journal of computational chemistry 29.13 (2008): 2044-2078.
    [29]. Wang, Vei, et al. "VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code." Computer Physics Communications 267 (2021): 108033.
    [30]. Bade, Balasaheb P., et al. "Tribenzyltin (IV) chloride thiosemicarbazones: novel single source precursors for growth of SnS thin films." Chemical Vapor Deposition 14.9‐10 (2008): 292-295.
    [31]. Casady, J. B., and R. Wayne Johnson. "Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review." Solid-State Electronics 39.10 (1996): 1409-1422.
    [32]. Östling, Mikael, Reza Ghandi, and Carl-Mikael Zetterling. "SiC power devices—Present status, applications and future perspective." 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. IEEE, 2011.
    [33]. Levinshtein, Michael E., Sergey L. Rumyantsev, and Michael S. Shur, eds. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. John Wiley & Sons, 2001.
    [34]. Käckell, P., B. Wenzien, and F. Bechstedt. "Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations." Physical Review B 50.15 (1994): 10761.
    [35]. Park, C. H., et al. "Structural and electronic properties of cubic, 2H, 4H, and 6H SiC." Physical Review B 49.7 (1994): 4485.
    [36]. Puschkarsky, Katja, et al. "Review on SiC MOSFETs high-voltage device reliability focusing on threshold voltage instability." IEEE Transactions on Electron Devices 66.11 (2019): 4604-4616.
    [37]. Backes, W. H., P. A. Bobbert, and W. Van Haeringen. "Energy-band structure of SiC polytypes by interface matching of electronic wave functions." Physical Review B 49.11 (1994): 7564.
    [38]. Bhatnagar, Mohit, and B. Jayant Baliga. "Comparison of 6H-SiC, 3C-SiC, and Si for power devices." IEEE Transactions on electron devices 40.3 (1993): 645-655.
    [39]. Codreanu, C., et al. "Comparison of 3C–SiC, 6H–SiC and 4H–SiC MESFETs performances." Materials Science in Semiconductor Processing 3.1-2 (2000): 137-142.
    [40]. Choyke, W. J., D. R. Hamilton, and Lyle Patrick. "Optical properties of cubic SiC: luminescence of nitrogen-exciton complexes, and interband absorption." Physical Review 133.4A (1964): A1163.
    [41]. Flores, Mauricio A., Walter Orellana, and Eduardo Menéndez-Proupin. "Accuracy of the Heyd-Scuseria-Ernzerhof hybrid functional to describe many-electron interactions and charge localization in semiconductors." Physical Review B 98.15 (2018): 155131.
    [42]. Gropp, William, et al. Using MPI: portable parallel programming with the message-passing interface. Vol. 1. MIT press, 1999.
    [43]. Gropp, William, et al. "A high-performance, portable implementation of the MPI message passing interface standard." Parallel computing 22.6 (1996): 789-828.
    [44]. Gabriel, Edgar, et al. "Open MPI: Goals, concept, and design of a next generation MPI implementation." European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting. Springer, Berlin, Heidelberg, 2004.
    [45]. Gropp, William, et al. "A high-performance, portable implementation of the MPI message passing interface standard." Parallel computing 22.6 (1996): 789-828.
    [46]. Shamis, Pavel, et al. "UCX: an open source framework for HPC network APIs and beyond." 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects. IEEE, 2015.
    [47]. Papadopoulou, Nikela, Lena Oden, and Pavan Balaji. "A performance study of UCX over InfiniBand." 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2017.
    [48]. Marr, Deborah T., et al. "Hyper-Threading Technology Architecture and Microarchitecture." Intel Technology Journal 6.1 (2002).
    [49]. Tian, Xinmin, et al. "Intel® OpenMP C++/Fortran Compiler for Hyper-Threading Technology: Implementation and Performance." Intel Technology Journal 6.1 (2002).
    [50]. Dagum, Leonardo, and Ramesh Menon. "OpenMP: an industry standard API for shared-memory programming." IEEE computational science and engineering 5.1 (1998): 46-55.
    [51]. Hursey, Joshua, Jeffrey M. Squyres, and Terry Dontje. "Locality-aware parallel process mapping for multi-core HPC systems." 2011 IEEE international conference on cluster computing. IEEE, 2011.
    [52]. Broquedis, François, et al. "hwloc: A generic framework for managing hardware affinities in HPC applications." 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing. IEEE, 2010.
    [53]. Beserra, David, et al. "Performance analysis of LXC for HPC environments." 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems. IEEE, 2015.
    [54]. Zhang, Jie, Xiaoyi Lu, and Dhabaleswar K. Panda. "Is singularity-based container technology ready for running MPI applications on HPC clouds?." Proceedings of the10th International Conference on Utility and Cloud Computing. 2017.
    [55]. Pfister, Gregory F. "An introduction to the infiniband architecture." High performance mass storage and parallel I/O 42.617-632 (2001): 102.
    [56]. Liu, Jiuxing, Jiesheng Wu, and Dhabaleswar K. Panda. "High performance RDMA-based MPI implementation over InfiniBand." International Journal of Parallel Programming 32.3 (2004): 167-198.
    [57]. Beck, Motti, and Michael Kagan. "Performance evaluation of the RDMA over ethernet (RoCE) standard in enterprise data centers infrastructure." Proceedings of the 3rd Workshop on Data Center-Converged and Virtual Ethernet Switching. 2011.
    [58]. Vienne, Jerome, et al. "Performance analysis and evaluation of infiniband fdr and 40gige roce on hpc and cloud computing systems." 2012 IEEE 20th Annual Symposium on High-Performance Interconnects. IEEE, 2012.
    [59]. Pennington, G., and N. Goldsman. "Empirical pseudopotential band structure of 3 C, 4 H, and 6 H SiC using transferable semiempirical Si and C model potentials." Physical Review B 64.4 (2001): 045104.
    [60]. Jiang, Zhenyi, et al. "Ab initio calculation of SiC polytypes." Solid state communications 123.6-7 (2002): 263-266.
    [61]. Xie, Changkun, et al. "First-principles studies of the electronic and optical properties of 6H–SiC." Physica B: Condensed Matter 336.3-4 (2003): 284-289.

    無法下載圖示 校內:2027-07-29公開
    校外:2027-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE