簡易檢索 / 詳目顯示

研究生: 李俊毅
Li, Chun-I
論文名稱: 探討微小RNA miR-146a及其標靶基因vimentin在過量表達野生型K-Ras基因之食道鱗狀上皮細胞的癌化現象
The effect of miR-146a and target gene vimentin on tumorigenesis of esophageal squamous cell carcinoma cell lines overexpressing wild-type K-Ras gene
指導教授: 劉校生
Liu, Hsiao-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 55
中文關鍵詞: 轉移食道鱗狀細胞癌miR-146a纖維蛋白K-Ras上皮間質轉型
外文關鍵詞: metastasis, ESCC, miR-146a, vimentin, K-Ras, EMT
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 食道鱗狀細胞癌為具高度轉移風險與高致死率的癌症之一,目前對於其轉移的機制仍不完全清楚。先前的研究中發現大量的纖連蛋白(fibronectin)聚集在食道癌CE81T細胞表面會促進該細胞癌轉移,並且與微小核糖核酸miR-146a的表現呈顯著之負相關,更證實miR-146a專一性地降解其標靶基因-纖維蛋白(vimentin)進而抑制食道鱗狀細胞癌爬行能力。然而CE81FN+食道鱗狀細胞在腫瘤生成與轉移的試驗中生長過於緩慢,需四個月。為了縮短該細胞於動物試驗中腫瘤生成的能力以利於轉移機制的研究,本研究目標透過植入致癌性基因以增強CE81FN+細胞的致癌性並縮短其腫瘤生成所需的時間,以了解miR-146a及纖維蛋白如何影響腫瘤轉移。因此我們建立以誘導方式表現致癌性K-Ras基因,同時帶有冷光報導基因的細胞株(CE81FN+K-Ras-luc),並再透過lentivirus建立大量表達miR-146a的細胞株(CE81FN+K-Ras-luc-146a)進行研究。免疫缺陷小鼠尾靜脈轉移實驗的結果顯示CE81FN+K-Ras-luc與CE81FN+K-Ras-luc-146a相較下表現出較強的轉移能力,並且CE81FN+K-Ras-luc相較於CE81FN+形成腫瘤的時間相較於先前的四個月縮短至約兩個月。然而我們卻在後續建立回補纖維蛋白的細胞株及動物實驗中發現喪失了K-Ras轉植基因的表現。為了克服此困難,我們轉而使用替代性的短暫轉染方法回補K-Ras轉植基因的表現。結果顯示過量表達野生型K-Ras外源基因能增強細胞增生、群落生成、細胞爬行與侵襲等癌化特性。此外源K-Ras亦能造成鈣粘蛋白(E-cadherin)表現量下降伴隨著纖維蛋白 (Vimentin)、轉錄因子Snail、Slug與MED28蛋白表現量上升,顯示與促進上皮間質轉型(EMT)可能有關。若在上述K-Ras外源基因細胞中,過量表達miR-146a的情況下,細胞增生、群落生成、細胞爬行與侵襲等癌化特性均被抑制, 鈣粘蛋白(E-cadherin)表現量上升伴隨著纖維蛋白 (Vimentin)、轉錄因子Slug與MED28蛋白表現量下降,。而在大量表達miR-146a的情況下回補纖維蛋白的表現,上述之癌化特性呈現不同程度之回復現象。上述之四細胞株在免疫缺陷小鼠的異種移植實驗中,腫瘤生成能力由強至弱分別為CE81FN+K-Ras-luc、CE81FN+K-Ras-luc-146a-VIM、CE81FN+K-Ras-luc-146a與CE81FN+。綜述之,本研究證實過量表達正常之K-Ras基因可顯著縮短ESCC CE81FN+細胞之致癌性及於小鼠中之成瘤時間,並揭示miR-146a經由降解目標基因Vimentin而抑制上述之癌化現象,致於EMT相關基因Med28基因在其中扮演何角色,值得進一步探討

    Metastasis is a major risk factor of esophageal squamous cell carcinoma (ESCC) and associated with high mortality rate, but the underlying mechanism remains poorly understood. We previously showed that fibronectin assembly promotes ESCC metastasis accompanied with decreased expression of miR-146a, which was identified by miRNA microarray. We demonstrated that miR-146a could inhibit ESCC cell migration by targeting vimentin gene in vitro by pMIR-luciferase reporter assay. But the ESCC CE81FN+ cells display low tumorigenicity in the mouse model. The objective of this study is to enhance the tumorigenicity of CE81FN+ cells by overexpression K-Ras oncogene and clarify how miR-146a and its target gene vimentin affect metastasis in vivo. We established stable cell lines harboring wild type K-Ras transgene together with a luciferase report gene, and within or without miR-146a (CE81FN+K-Ras-luc and CE81FN+K-Ras-luc-146a). Our in vivo data show that CE81FN+K-Ras-luc cells exhibited high lung metastasis capability in NOD/SCID mice, and the time for lung metastasis of CE81FN+K-Ras-luc cells was shortened to about 2 months compared with the parental CE81FN+ cells (four months) by tail vein injection. Because the K-Ras transgene disappeared in CE81FN+K-Ras-luc related cell lines, K-Ras transgene was re-introduced into the cell lines by transient transfection. Subsequently, we reveal that overexpressing wild-type K-Ras gene enhanced cell proliferation, colony formation, cell migration and invasion in vitro by MTT assay, soft agar assay, Western blot analysis and TranswellTM. K-Ras transgene increased the expression of vimentin, Snail, Slug and MED28, a Mediator subunit but decreased the expression of E-cadherin. In contrast, miR-146a inhibited cell proliferation, colony formation, cell migration, invasion, and increased E-cadherin expression and decreased the expression of vimentin, snail, slug and MED28 through targeting vimentin gene expression. Restoring vimentin expression in CE81FN+K-Ras-luc-146a cells increased cell proliferation, colony formation, cell migration and invasion ability. Furthermore, CE81FN+K-Ras-luc cells showed high xenograft tumor formation, following by CE81FN+K-Ras-luc-146a-VIM, CE81FN+K-Ras-luc-146a and parental CE81FN+cells in NOD/SCID mice. In conclusion, we confirmed that overexpression of wild type K-Ras transgene in ESCC CE81+ cell lines could enhance the tumorigenicity and shorten the time of tumor formation, and Ras related tumorigenesis could be suppressed by miR-146a possibly through miR-146a targeting vimentin gene expression. However, the roles of EMT related genes and MED28 gene in ESCC EMT remain to be determined.

    Chinese Abstract…………………………………………………………………. I Abstract………………………...…………………………………………………. III Acknowledgements………………………………………………………………. V Contents…………………………………………………………………………… VI Figure List…………….………...………………………………………………… VIII Abbreviation List…………..……………………………………………............... IX Introduction I. Esophageal Squamous Cell Carcinoma (ESCC)…………………………….. 1 II. MicroRNA and ESCC………………………………………………………. 2 III. K-Ras and ESCC…..………………………………………………………. 3 IV. Fibronectin (FN), vimentin (VIM) and ESCC………………….…………. 4 V. Epithelial-Mesenchymal Transition (EMT)………………………………... 4 VI. EMT and ESCC..………………………………………………………….. 5 VII. Mediator complex subunit 28 and cancer.……………………………….. 6 VII. Specific aim……………………………………………………………..... 7 Materials and Methods I. Cell lines culture………..……………………………………………………. 8 II. Western blot analysis………..………….…………………………………... 9 III. Detection of miRNA by real-time polymerase chain reaction (PCR)..……………………………………………………….……………….. 10 IV. MTT assay………………………………………………………..……….. 11 V. Colony formation…………………………………………………………... 11 VI. TranswellTM assay for cell migration and invasion assays ………………… 12 VII. Immunofluorescence staining……………………………..……………… 12 VIII. Experimental metastasis assays in vivo………..……………………….... 13 IX. Lung-to-lung metastasis assay in vivo………...……..…………………….. 14 X. Tumor growth assay in vivo…………………………………………………. 15 XI. Statistical analysis………………………...…..…………………………… 15 Results I. The effect of miR-146a and its target gene vimentin in CE81FN+K-Ras cells on metastasis in mice models………………………………………………………. 16 II. Verification of the K-Ras transgene expression in CE81FN+ derivatives cells...................................................................................................................... 18 III. Restoration of wild-type K-Ras transgene expression and verification of miR-146a and vimentin expression in CE81FN+ derivatives stable cell lines…………………………………………………………….…………........ 19 IV. The effect of K-Ras, miR-146a, and vimentin on ESCC cell proliferation and colony formation………………………………………………………..………. 20 V. MiR-146a suppressed ESCC cell migration and invasion through targeting vimentin……………………………………………………………………….. 21 VI. The effect of K-Ras, miR-146a and vimentin on EMT-related protein expression.……………………………..………………....………………….. 22 VII. The effect of K-Ras, miR-146a and vimentin on tumor formation in xenograft mouse model.…………………………………………………………………..... 24 Discussion…………………………………………………………………………… 26 References…………………………………………………………………………... 32 Figures………………………………………………………………………………. 39

    1 Huang, F. L. & Yu, S. J. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg. 41, 210-215, doi:10.1016/j.asjsur.2016.10.005 (2018).
    2 Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J. & Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87-108, doi:10.3322/caac.21262 (2015).
    3 MOHW. Taiwan: Ministry of Health and Welfare; 2018. Available from: https://www.mohw.gov.tw/cp-16-41794-1.html [Last accessed on 2018 Jun 15]. (2018).
    4 Pickens, A. & Orringer, M. B. Geographical distribution and racial disparity in esophageal cancer. ANN THORAC SURG 76, S1367-S1369, doi:10.1016/s0003-4975(03)01202-5 (2003).
    5 Rustgi, A. K. & El-Serag, H. B. Esophageal carcinoma. N. Engl. J. Med. 371, 2499-2509, doi:10.1056/NEJMra1314530 (2014).
    6 Alsina, M., Moehler, M. & Lorenzen, S. Immunotherapy of Esophageal Cancer: Current Status, Many Trials and Innovative Strategies. CANCER RES TREAT 41, 266-271, doi:10.1159/000488120 (2018).
    7 Lu, C. L., Lang, H. C., Luo, J. C., Liu, C. C., Lin, H. C., Chang, F. Y. & Lee, S. D. Increasing trend of the incidence of esophageal squamous cell carcinoma, but not adenocarcinoma, in Taiwan. Cancer Causes Control 21, 269-274, doi:10.1007/s10552-009-9458-0 (2010).
    8 Yokobori, T., Suzuki, S., Tanaka, N., Inose, T., Sohda, M., Sano, A., Sakai, M., Nakajima, M., Miyazaki, T., Kato, H. & Kuwano, H. MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci. 104, 48-54, doi:10.1111/cas.12030 (2013).
    9 Farazi, T. A., Hoell, J. I., Morozov, P. & Tuschl, T. MicroRNAs in human cancer. Adv. Exp. Med. Biol. 774, 1-20, doi:10.1007/978-94-007-5590-1_1 (2013).
    10 Nair, V. S., Maeda, L. S. & Ioannidis, J. P. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J. Natl. Cancer Inst. 104, 528-540, doi:10.1093/jnci/djs027 (2012).
    11 Iorio, M. V. & Croce, C. M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4, 143-159, doi:10.1002/emmm.201100209 (2012).
    12 Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R. & Golub, T. R. MicroRNA expression profiles classify human cancers. Nature 435, 834-838, doi:10.1038/nature03702 (2005).
    13 Chang, Z.-w., Zhong, Y.-l., Jia, Y.-x. & Qin, Y.-r. The role of microRNAs in the occurrence and development of esophageal squamous cell carcinoma. CSRC 1, 1-9 (2017).
    14 Zhang, J., Chen, D., Liang, S., Wang, J., Liu, C., Nie, C., Shan, Z., Wang, L., Fan, Q. & Wang, F. miR-106b promotes cell invasion and metastasis via PTEN mediated EMT in ESCC. Oncol. Lett. 15, 4619-4626 (2018).
    15 Yu, T., Cao, R., Li, S., Fu, M., Ren, L., Chen, W., Zhu, H., Zhan, Q. & Shi, R. MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer 15, 29 (2015).
    16 Sharma, P., Saini, N. & Sharma, R. miR-107 functions as a tumor suppressor in human esophageal squamous cell carcinoma and targets Cdc42. Oncol. Rep. 37, 3116-3127 (2017).
    17 Fu, M.-g., Li, S., Yu, T.-t., Qian, L.-j., Cao, R.-s., Zhu, H., Xiao, B., Jiao, C.-h., Tang, N.-n. & Ma, J.-j. Differential expression of miR‐195 in esophageal squamous cell carcinoma and miR‐195 expression inhibits tumor cell proliferation and invasion by targeting of Cdc42. FEBS Lett. 587, 3471-3479 (2013).
    18 Zhang, W., Lei, C., Fan, J. & Wang, J. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis. Biochem. Biophys. Res. Commun. 477, 144-149 (2016).
    19 Yang, M., Liu, R., Li, X., Liao, J., Pu, Y., Pan, E., Yin, L. & Wang, Y. miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4. Mol. Cells 37, 873 (2014).
    20 Ding, D.-P., Chen, Z.-L., Zhao, X.-H., Wang, J.-W., Sun, J., Wang, Z., Tan, F.-W., Tan, X.-G., Li, B.-Z. & Zhou, F. miR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating cyclin E expression. Carcinogenesis 32, 1025-1032 (2011).
    21 Mao, Y., Li, L., Liu, J., Wang, L. & Zhou, Y. MiR-495 inhibits esophageal squamous cell carcinoma progression by targeting Akt1. Oncotarget 7, 51223 (2016).
    22 Shimada, Y., Takei, Y., Okumura, T., Nagata, T., Fujinami, H., Arima, M., Abe, T., Niwa, Y., Tajika, M. & Sudo, T. (AACR, 2017).
    23 Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274-284, doi:10.1038/nrc2622 (2009).
    24 Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761-774, doi:10.1038/nrc3106 (2011).
    25 Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689 (1989).
    26 Bos, J. L. The ras gene family and human carcinogenesis. MUTAT RES-REV GENET 195, 255-271 (1988).
    27 Yang, J. W. & Choi, Y. L. Genomic profiling of esophageal squamous cell carcinoma (ESCC)-Basis for precision medicine. Pathol. Res. Pract. 213, 836-841, doi:10.1016/j.prp.2017.02.021 (2017).
    28 Zhu, L., Wang, Z., Fan, Q., Wang, R. & Sun, Y. microRNA-27a functions as a tumor suppressor in esophageal squamous cell carcinoma by targeting KRAS. Oncol. Rep. 31, 280-286, doi:10.3892/or.2013.2807 (2014).
    29 Jiang, Y., Duan, Y. & Zhou, H. MicroRNA-27a directly targets KRAS to inhibit cell proliferation in esophageal squamous cell carcinoma. Oncol. Lett. 9, 471-477, doi:10.3892/ol.2014.2701 (2015).
    30 Hummel, R., Sie, C., Watson, D. I., Wang, T., Ansar, A., Michael, M. Z., Van der Hoek, M., Haier, J. & Hussey, D. J. MicroRNA signatures in chemotherapy resistant esophageal cancer cell lines. World J. Gastroenterol. 20, 14904-14912, doi:10.3748/wjg.v20.i40.14904 (2014).
    31 Huang, L., Cheng, H. C., Isom, R., Chen, C. S., Levine, R. A. & Pauli, B. U. Protein kinase Cepsilon mediates polymeric fibronectin assembly on the surface of blood-borne rat breast cancer cells to promote pulmonary metastasis. J. Biol. Chem. 283, 7616-7627, doi:10.1074/jbc.M705839200 (2008).
    32 Rosandra N. Kaplan, R. D. R., Stergios Zacharoulis, Anna H. Bramley, Loı¨c Vincent,Carla Costa, Daniel D. MacDonald, David K. Jin, Koji Shido, Scott A. Kerns1,2, Zhenping Zhu,Daniel Hicklin, Yan Wu, Jeffrey L. Port, Nasser Altorki, Elisa R. Port, Davide Ruggero,Sergey V. Shmelkov, Kristian K. Jensen, Shahin Rafii, David Lyden. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-827, doi:10.1038/nature04186 (2005).
    33 Zhang, J., Zhi, H., Zhou, C., Ding, F., Luo, A., Zhang, X., Sun, Y., Wang, X., Wu, M. & Liu, Z. Up-regulation of fibronectin in oesophageal squamous cell carcinoma is associated with activation of the Erk pathway. J. Pathol. 207, 402-409, doi:10.1002/path.1846 (2005).
    34 Velez-delValle, C., Marsch-Moreno, M., Castro-Munozledo, F., Galvan-Mendoza, I. J. & Kuri-Harcuch, W. Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Sci. Rep. 6, 24389, doi:10.1038/srep24389 (2016).
    35 Ivaska, J., Pallari, H. M., Nevo, J. & Eriksson, J. E. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050-2062, doi:10.1016/j.yexcr.2007.03.040 (2007).
    36 Terriac, E., Coceano, G., Mavajian, Z., Hageman, T. A., Christ, A. F., Testa, I., Lautenschlager, F. & Gad, A. K. Vimentin Levels and Serine 71 Phosphorylation in the Control of Cell-Matrix Adhesions, Migration Speed, and Shape of Transformed Human Fibroblasts. Cells 6, doi:10.3390/cells6010002 (2017).
    37 Zeng, S., Xie, X., Xiao, Y. F., Tang, B., Hu, C. J., Wang, S. M., Wu, Y. Y., Dong, H., Li, B. S. & Yang, S. M. Long noncoding RNA LINC00675 enhances phosphorylation of vimentin on Ser83 to suppress gastric cancer progression. Cancer Lett. 412, 179-187, doi:10.1016/j.canlet.2017.10.026 (2018).
    38 Jin, H., Morohashi, S., Sato, F., Kudo, Y., Akasaka, H., Tsutsumi, S., Ogasawara, H., Miyamoto, K., Wajima, N. & Kawasaki, H. Vimentin expression of esophageal squamous cell carcinoma and its aggressive potential for lymph node metastasis. Biomed Res 31, 105-112 (2010).
    39 Tanaka, M., Kijima, H., Shimada, H., Makuuchi, H., Ozawa, S. & Inokuchi, S. Expression of podoplanin and vimentin is correlated with prognosis in esophageal squamous cell carcinoma. Mol Med Rep 12, 4029-4036, doi:10.3892/mmr.2015.3966 (2015).
    40 Sudo, T., Iwaya, T., Nishida, N., Sawada, G., Takahashi, Y., Ishibashi, M., Shibata, K., Fujita, H., Shirouzu, K., Mori, M. & Mimori, K. Expression of mesenchymal markers vimentin and fibronectin: the clinical significance in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 20 Suppl 3, S324-335, doi:10.1245/s10434-012-2418-z (2013).
    41 Yap, A. S., Brieher, W. M. & Gumbiner, B. M. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119-146 (1997).
    42 Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818-829, doi:10.1016/j.devcel.2008.05.009 (2008).
    43 Hay, E. D. An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 154, 8-20 (1995).
    44 Chen, C., Zhao, M., Huang, X., Wang, X., Liu, W., Chen, M., Yin, B., Li, Z., Yuan, Y., Lu, Q. & Yu, F. Abstract 859: Epigenetic regulation of epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Cancer Res. 77, 859-859, doi:10.1158/1538-7445.am2017-859 (2017).
    45 Skovierova, H., Okajcekova, T., Strnadel, J., Vidomanova, E. & Halasova, E. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int. J. Mol. Med. 41, 1187-1200, doi:10.3892/ijmm.2017.3320 (2018).
    46 Kim, R. K., Suh, Y., Yoo, K. C., Cui, Y. H., Kim, H., Kim, M. J., Gyu Kim, I. & Lee, S. J. Activation of KRAS promotes the mesenchymal features of basal-type breast cancer. Exp. Mol. Med. 47, e137, doi:10.1038/emm.2014.99 (2015).
    47 Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J. & de Herreros, A. G. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2, 84 (2000).
    48 Cano, A., Pérez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., Portillo, F. & Nieto, M. A. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76 (2000).
    49 Jiao, W., Miyazaki, K. & Kitajima, Y. Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br. J. Cancer 86, 98 (2002).
    50 Uchikado, Y., Natsugoe, S., Okumura, H., Setoyama, T., Matsumoto, M., Ishigami, S. & Aikou, T. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin. Cancer Res. 11, 1174-1180 (2005).
    51 Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J. W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250-255, doi:10.1016/j.tibs.2005.03.002 (2005).
    52 Schiano, C., Casamassimi, A., Rienzo, M., de Nigris, F., Sommese, L. & Napoli, C. Involvement of Mediator complex in malignancy. Biochim. Biophys. Acta 1845, 66-83, doi:10.1016/j.bbcan.2013.12.001 (2014).
    53 Shi, J., Han, Q., Zhao, H., Zhong, C. & Yao, F. Downregulation of MED23 promoted the tumorigenecity of esophageal squamous cell carcinoma. Mol. Carcinog. 53, 833-840, doi:10.1002/mc.22041 (2014).
    54 Lee, M. F., Hsieh, N. T., Huang, C. Y. & Li, C. I. All Trans-Retinoic Acid Mediates MED28/HMG Box-Containing Protein 1 (HBP1)/beta-Catenin Signaling in Human Colorectal Cancer Cells. J. Cell. Physiol. 231, 1796-1803, doi:10.1002/jcp.25285 (2016).
    55 Huang, C. Y., Hsieh, N. T., Li, C. I., Weng, Y. T., Liu, H. S. & Lee, M. F. MED28 Regulates Epithelial–Mesenchymal Transition Through NFκB in Human Breast Cancer Cells. J. Cell. Physiol. 232, 1337-1345 (2017).
    56 Huang, C. Y., Chou, Y. H., Hsieh, N. T., Chen, H. H. & Lee, M. F. MED28 regulates MEK1-dependent cellular migration in human breast cancer cells. J. Cell. Physiol. 227, 3820-3827, doi:10.1002/jcp.24093 (2012).
    57 Zhang, X., Cheng, Q., Yin, H. & Yang, G. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). Int. J. Oncol. 51, 18-24, doi:10.3892/ijo.2017.4025 (2017).
    58 Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J., Nevo, J., Gjerdrum, C., Tiron, C., Lorens, J. & Ivaska, J. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436 (2011).
    59 Li, M., Marin-Muller, C., Bharadwaj, U., Chow, K.-H., Yao, Q. & Chen, C. MicroRNAs: control and loss of control in human physiology and disease. World J. Surg. 33, 667-684 (2009).
    60 Taganov, K. D., Boldin, M. P., Chang, K.-J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U. S. A. 103, 12481-12486 (2006).
    61 Zhang, J. & Ma, L. MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer Metastasis Rev. 31, 653-662, doi:10.1007/s10555-012-9368-6 (2012).
    62 Wang, C., Zhang, W., Zhang, L., Chen, X., Liu, F., Zhang, J., Guan, S., Sun, Y., Chen, P., Wang, D., Un Nesa, E., Cheng, Y. & Yousef, G. M. miR-146a-5p mediates epithelial-mesenchymal transition of oesophageal squamous cell carcinoma via targeting Notch2. Br. J. Cancer 115, 1548-1554, doi:10.1038/bjc.2016.367 (2016).
    63 Virtakoivu, R., Mai, A., Mattila, E., De Franceschi, N., Imanishi, S. Y., Corthals, G., Kaukonen, R., Saari, M., Cheng, F., Torvaldson, E., Kosma, V. M., Mannermaa, A., Muharram, G., Gilles, C., Eriksson, J., Soini, Y., Lorens, J. B. & Ivaska, J. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer Res. 75, 2349-2362, doi:10.1158/0008-5472.CAN-14-2842 (2015).
    64 Xu, M., Li, J., Wang, X., Meng, S., Shen, J., Wang, S., Xu, X., Xie, B., Liu, B. & Xie, L. MiR-22 suppresses epithelial–mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis. 9, 209 (2018).
    65 Cho, J. G., Lim, K. H. & Park, S. G. MED28 increases the colony-forming ability of breast cancer cells by stabilizing the ZNF224 protein upon DNA damage. Oncol. Lett. 15, 3147-3154, doi:10.3892/ol.2017.7718 (2018).
    66 Costigliola, N., Ding, L., Burckhardt, C. J., Han, S. J., Gutierrez, E., Mota, A., Groisman, A., Mitchison, T. J. & Danuser, G. Vimentin fibers orient traction stress. Proc. Natl. Acad. Sci. U. S. A. 114, 5195-5200, doi:10.1073/pnas.1614610114 (2017).
    67 Tao, S. F., He, H. F. & Chen, Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol. Cell. Biochem. 402, 93-100, doi:10.1007/s11010-014-2317-7 (2015).
    68 Zheng, N.-G., Mo, S.-J., Li, J.-P. & Wu, J.-L. Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum. Asian Pac. J. Cancer Prev. 15, 8679-8684, doi:10.7314/apjcp.2014.15.20.8679 (2014).
    69 Wang, Y. J., Lin, J. F., Cheng, L. H., Chang, W. T., Kao, Y. H., Chang, M. M., Wang, B. J. & Cheng, H. C. Pterostilbene prevents AKT-ERK axis-mediated polymerization of surface fibronectin on suspended lung cancer cells independently of apoptosis and suppresses metastasis. J. Hematol. Oncol. 10, 72, doi:10.1186/s13045-017-0441-z (2017).

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE