| 研究生: |
陳誠 Chen, Cheng |
|---|---|
| 論文名稱: |
優先佇列等候時間分配演算法的優化 Improving the computation time for obtaining the waiting-time distribution of priority queues |
| 指導教授: |
張欣民
Chang, Hsing-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 有限馬可夫鏈 、優先佇列 、等候時間分配 |
| 外文關鍵詞: | Markov chain, priority queue, waiting-time distribution |
| 相關次數: | 點閱:121 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究一個具有多等級、多個服務單位並且有排隊長度限制的優先佇列系統。其中針對不同優先順序的等級,對抵達過程與服務時間給予假設。本研究在可以插隊與不可以插隊的佇列規則下,使用有限馬可夫鏈來獲得優先佇列的等候時間分配,並優化既有的演算法,使得計算時間減少。我們接著借數例呈現在固定佇列規則之下,給定不同的初始狀態分配所算出來的等候時間分配之差異,以及給定相同的初始狀態,在不同的佇列規則下所算出來的等候時間分配會有所不同。最後,我們介紹一個簡易的方式為前述各個情況所獲得的等候時間分配計算其期望值與變異數。
This paper studies a priority queue system with multiple levels, multiple service units and queue length restrictions. A hypothesis is given to the arrival process and service time for different priority levels. In this study, a Markov chain approach is used to obtain the waiting-time distribution of preemptive or non-preemptive priority queue, and the existing algorithm is optimized to reduce the time for computation. We then demonstrate in numerical examples that, given a rule, different waiting-time distributions are obtained resulting from various initial state distributions; given the same initial state, a waiting-time distribution can be obtained for each of the preemptive or the non-preemptive priority queue with the same parameters. In addition, the expected value of wait time and its variance for a priority queueing system become readily available once the waiting-time distribution is calculated.
1. Kendall, D. G. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. The Annals of Mathematical Statistics, 24, 338-354 (1953)
2. A. Cobham. Priority assignment in waiting line problems. Journal of the Operations Research Society of America, 3(4) :547 (1954)
3. M. A. Aczel. The effect of introducing priorities.
Journal of the Operations Research Society of America, 8(5): 730-733 (1960)
4. Kleinrock, L. Queueing Systems, Volume II: Computer Applications Wiley- Interscience, New York (1976)
5. Kapadia, A. S., Kazmi, M. F. and Mitchell, A. C. Analysis of a finite capacity nonpreemptive priority queue. Computers and Operations Research, 11, 337-343 (1984)
6. D. Wagner. Waiting times of a finite-capacity multi-server model with non- preemptive priorities. European Journal of Operational Research, 102(1): 227-241 (1997)
7. Laskowsk et al. Models of Emergency Departments for Reducing Patient Waiting Times (2009)
8. H. M. Chang. Waiting-Line Problems with Priority Assignment, and its Application on Hospital Emergency Department Wait-Time. Doctoral dissertation, University of Manitoba (2011)
9. R. Durrett. Essentials of Stochastic Processes, Springer Texts in Statistics, 255-256 (2012)
10. 黃耀輝. “考量具有等待時間限制式之航空站安全檢查問題,”國立成功大學工業與資訊管理學系研究所碩士論文 (2015)