簡易檢索 / 詳目顯示

研究生: 黃貞翰
Huang, Chen-Han
論文名稱: 探針強化近場掃描式光學顯微鏡之研製
Research and Development of Tip-enhanced Near-field Scanning Optical Microscope
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 100
中文關鍵詞: 近場光學表面電漿子
外文關鍵詞: surface plasmons, Near-field
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文主要的研究主要目的為開發日後一嶄新的近場掃描光學顯微儀,應用無孔徑探針方式將近場訊號解析出來,期望可達到側向解析度低於10nm以下。
      系統主要是建構在使用音叉感測器的原子力學顯微鏡上,並結合了外差干涉技術來擷取光學訊號。光偵測器則是使用快速雪崩二極體,在遠場偵測干涉後的高頻光學訊號。偵測的散射光線,主要有兩個部分,一為屬於針尖與表面奈米結構交互作用後的近場光學訊號;另一為非此部分的遠場背景雜訊。使用解調探針高諧振頻率可用來擷取近場訊號,獲得奈米結構的近場光學資訊。利用掃描的方式同時獲得光學與物理結構資訊。
      此無孔徑近場掃描光學顯微儀系統的發展是使用音叉感測器的原子力學顯微鏡,較一般光纖式探針的優點是能有更好的空間解析度,不會受到光纖截止效應、熱傷害…等問題而受到解析度上的限制。另外有別於使用一般懸臂式光感測式探針作為探針定位的原子力學顯微鏡為架構的無孔徑近場掃描光學顯微鏡而言,本系統中的探針定位控制感應器採用音叉感測器,避免了熱雜訊效應與高諧振動效應這些會影響擷取近場訊號的擾動因素。
      本論文的研究對於擷取近場訊號的調變控制特別利用了音叉感測器,來避免熱效應與高諧振動效應的影響,已獲取真確的近場訊號。

      In this thesis, a new near-field scanning optical microscope based on an apertureless scattering technique is introduced for resolving optical properties of surfaces with lateral resolution reaching 10 nm and greater.
      The construction of the instrument is supported by a dynamic mode, quartz tuning-fork-based atomic force microscope (AFM), which is coupled with a heterodyne interferometry optical detection system. We mounted the AFM tip perpendicular to the tuning-fork tine whose apex is metallic or dielectric. The backscattered light is collected and interfered with a reference beam whose frequency is slightly shifted with respect to the scattered beam. The interfered signals are detected by a far-field and high-speed avalanche photodiode(APD). The scattered light consists of two parts of differing in spatial origin. One of them is the near field which contains optical information that belongs to the apex and interacts with nanostructures. The second part is the far field part which comes from scattering along the illuminated tip body and the substrate surface. By demodulating the signal of the tip’s vibrations at high harmonics, the far field part can be suppressed effectively, leaving only the near field information of the nanostructures. By raster scanning the sample under the AFM tip, the information about the surface amplitude and phase is obtained simultaneously with its topography.
      This new apertureless, near-field scanning optical microscope (aNSOM) with a quartz tuning-fork AFM, features several advantages over the well-known aperture NSOM: high resolution limited only by the tip apex dimension, and effective background suppression. In general, an aNSOM system based on an AFM which is used the cantilever beam and an optical feedback method introduces thermal noise and an anharmonic phenomenon.
      This research, specific operation settings of the quartz tuning fork will be employed as a distance modulation unit which avoid thermal noise and anharmonic phenomenon, and will solely produce optical information without artifacts in the detected signal.

    第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與方法 5 1-4 論文架構 6 第二章 光學空間解析度 7 2-1光學繞射極限 7 2-2光學解析度的增進 8 2-3光學繞射極限的突破 10 2-4光纖孔徑探針式近場光學掃瞄顯微鏡 16 2-5無孔徑探針式近場光學掃瞄顯微鏡-apertureless NSOM 18 第三章 無孔徑探針近場光學掃描顯微鏡 20 3-1表面原子或分子的特性 21 3-2 光的吸收與散射 22 3-3區域表面電漿子 23 3-3.1粒子電漿子 24 3-3.2 金屬粒子對光的散射與吸收 25 3-4探針與表面的交互作用 28 3-4.1材料的電磁效應 28 3-4.2 電荷影像效應 31 3-4.3 場強疊加效應 33 3-5 距離調變原理 39 3-5.1 針尖的散射與吸收截面 39 3-5.2交互作用原理-電磁場的偵測 42 3-5.3 針尖對電磁場的偵測效應 46 3-5.4距離調變效應 48 第四章 系統架構 53 4-1 音叉式探針掃描系統與奈米定位平台 54 4-1.1 共振高諧波效應 55 4-1.2 音叉式探針原理 58 4-1.3 音叉式制動與偵測方式 62 4-1.4 壓電驅動器 65 4-1.5 音叉式探針掃描顯微系統 73 4-2 光學訊號擷取系統 75 4-2.1外差干涉原理 75 4-2.2外差光源 79 4-3 訊號解調電路 81 4-4 數位鎖相放大器之研製 82 4-4.1 鎖相放大器原理 82 4-4.2模擬分析 84 4-5 韌體設計 87 4-5.1 DSP發展板 87 4-5.2 USB 2.0傳輸介面 92 第五章 結果與討論 92 5-1 探針掃描系統 92 5-2 數位鎖相放大器與音叉探針定位系統 92 第六章 結果與討論 97

    [1] G. Binnig and H. Rohrer, Helvetica Physica Acta 55, 726 (1982).
    [2] G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [3] Synge E. H., Philos. Mag., 6 (1928) 356.
    [4] K. Dickmann, J. Jersch, and F. Demming, Surface And Interface Analysis 25, 500 (1997).
    [5] S. Nie and S. R. Emory, Science 275, 1102 (1997).
    [6] B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, Electrochemistry (Japanese Electrochemical Society) 68, 942 (2000).
    [7] M. S. Anderson, Appl. Phys. Lett. 76, 3130 (2000).
    [8] B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, Single Molecules 3, 285 (2002).
    [9] R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
    [10] N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, Optics Communications 183, 1 (2000).
    [11] M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Chem. Soc. Chem. Commun. 80, (1973).
    [12] M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Chem. Phys. Lett. 26, (1974).
    [13] D. L. Jeanmaire and R. P. Van Duyne, J. of Electroanal. Chem. 84, (1977).
    [14] A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, PRL 90, 095503 (2003).
    [15] 黃士豪,DVD光碟機聚焦與尋軌誤差訊號之分析,國立中央大學機械工程研究所碩士論文,6月(2004)。
    [18] 林正祥,光電訊號處理系統於生醫檢測之開發與應用,國立中央大學機械工程研究所碩士論文,6月(2005)。
    [17] 蘇園登,表面電漿共振相位影像系統,國立中央大學機械工程研究所碩士論文,6月(2005)。
    [18] C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley-Interscience, (1988).
    [19] 黃昆財,嶄新表面電漿子感測元件,國立中央大學機械工程研究所碩士論文,6月(2004)。
    [20] Knoll B. and Keilmann F., Nature, 399 134 (1999).
    [21] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377 (1908).
    [22] J. J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).

    [23] P. Johansson, R. Monreal, and P. Apell, Phys. Rev. B 42, 9210 (1990).
    [24] L. Landau, E. Lifchitz, and L. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).
    [25] R. Carminati, M. Nieto-Vesperinas and J.-J. Greffet, J. Opt. Soc. Am. A 15, 706 (1998).
    [26] W. H. J. Rensen, Appl. Phys. Lett.75, 1640 (1999).

    下載圖示 校內:2007-08-14公開
    校外:2007-08-14公開
    QR CODE