| 研究生: |
謝竺瑾 Hsieh, Chu-Chin |
|---|---|
| 論文名稱: |
碳權配額下航線經營者減排策略分析 The Analysis of Shipping Operators' Carbon Mitigation Strategies under Carbon Allowance Allocation |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 碳權配額 、貨櫃船 、散裝船 、油輪 、減排策略組合 |
| 外文關鍵詞: | carbon allowance allocation, container shipping, bulk carrier, tanker, carbon mitigation portfolio |
| 相關次數: | 點閱:75 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為減少海運業的溫室氣體排放量,國際海事組織(IMO)於2018年通過國際海運氣候變遷策略,訂定了海運的減排目標,希望藉以推動海運業邁向低碳。此外,國際海事組織與歐盟皆曾提出海運業實施碳排放交易制度的可能性。有鑒於此,本研究首先以IMO提出之2050年排放目標,設定2018年至2050年各階段的排放目標;再者,根據上述排放目標,分析海運碳排放交易制度實施時的免費碳權配額問題,並提出最佳化免費碳權配額數量,與航線經營者的減排策略建議。
本研究建構海運碳權配額問題的多目標模型,模型目標包括最大化海運航線經營者的經濟效益,以及最大化免費碳權配額的比例。研究結果顯示,海運碳交易機制的確能促使航線經營者採取減排措施,並在2050年達到減排目標。碳權配額設定層面,最佳化免費碳權配額比例,可以有效減少航線排放量,其中航線各期間之最佳化免費碳權配額比例依序如下,貨櫃航線為74%、48%與47%;散裝航線為36%、27%與19%;油輪航線為55%、31%與40%。減排效果層面,與基礎情境相比,貨櫃航線、散裝航線與油輪航線分別能達到42%、40%與41%的減量。在最佳化減排策略層面,三種航線皆採取減速20%與減速30%,可達到減排效果,唯未選擇使用LNG(液化天然氣)燃油,顯示使用LNG燃油所產生的額外減排成本,高於自碳交易市場購買碳權的成本,因而降低航線經營者選擇使用LNG燃油的誘因。本研究建議,海運碳交易市場有成立之必要性,另政策制定者應致力於投資與研發更有效的船舶減排技術,以提升航線經營者的減排動機,才得以有效增加未來海運部門減排量。
IMO had adopted an initial strategy, setting out a vision for decarbonizing the international shipping sector. Moreover, both EU and IMO had also proposed the possibility of reducing shipping CO2 emissions through carbon trading market. In view of this, this study analyze one of the barriers while implementing carbon-trading market in shipping industry, which is the issue of carbon allowance allocation. Hence, this study develop a multi-objective model with consideration of different needs. The results show that, compared with the situation which takes no action on carbon mitigation, container, bulk and tanker shipping routes can achieve 42%, 40% and 41% carbon reduction respectively after implementing the carbon trading market. Moreover, shipping operators have adopted a 20% speed reduction and a 30% speed reduction in order to achieve the emission reduction target. However, applying LNG fuel hasn’t been regard as a option for all operators, indicating that the additional carbon reduction cost generated by applying LNG fuel is too high, thus it reduce the incentives for operators to use LNG fuel.
Balland, O., Girard, C., Erikstad, S. O., & Fagerholt, K. (2015). Optimized selection of vessel air emission controls—moving beyond cost-efficiency. Maritime Policy & Management, 42(4), 362-376.
Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., & Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182, 72-88.
BP. (2018). BP Statistical Review of World Energy(2018). Retrieved May 02, 2019 from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf
Berge Bulk Singapore Pte. Ltd.(2019). Retrieved May 02, 2019 from http://www.bergebulk.com/
Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. Transportation Research Part D: Transport and Environment, 14(8), 593-598.
Chen, G., Govindan, K., & Golias, M. M. (2013). Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern. Transportation Research Part E: Logistics and Transportation Review, 55, 3-22.
Dessens, O., Anger, A., Barker, T., & Pyle, J. (2014). Effects of decarbonising international shipping and aviation on climate mitigation and air pollution. Environmental Science & Policy, 44, 1-10.
Endresen, Ø., Sørgård, E., Sundet, J. K., Dalsøren, S. B., Isaksen, I. S. A., Berglen, T. F., & Gravir, G. (2003). Emission from international sea transportation and environmental impact. Journal of Geophysical Research: Atmospheres, 108(D17)
Franc, P., & Sutto, L. (2014). Impact analysis on shipping lines and European ports of a cap- and-trade system on CO2 emissions in maritime transport. Maritime Policy & Management, 41(1), 61-78.
Hu, Q.-M., Hu, Z.-H., & Du, Y. (2014). Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels. Computers & Industrial Engineering, 70, 1-10.
Harper Petersen & Co.(2019). Retrieved March 3, 2019, from http://www.harperpetersen.com/
Koesler, S., Achtnicht, M., & Köhler, J. (2015). Course set for a cap? A case study among ship operators on a maritime ETS. Transport Policy, 37, 20-30.
Li, L., Ye, F., Li, Y., & Tan, K. H. (2018). A bi-objective programming model for carbon emission quota allocation: Evidence from the Pearl River Delta region. Journal of Cleaner Production, 205, 163-178.
Liu, Z., Geng, Y., Dai, H., Wilson, J., Xie, Y., Wu, R., . . . Yu, Z. (2018). Regional impacts of launching national carbon emissions trading market: A case study of Shanghai. Applied Energy, 230, 232-240.
Miola, A., Marra, M., & Ciuffo, B. (2011). Designing a climate change policy for the international maritime transport sector: Market-based measures and technological options for global and regional policy actions. Energy Policy, 39(9), 5490-5498.
MARKETS INCIDER. (2018). CO2 EUROPEAN EMISSION ALLOWANCES IN EUR - HISTORICAL PRICES. Retrieved May 02, 2019 from http://markets.businessinsider.com/commodities/historical-prices/co2-emissionsrechte/euro/1.1.2004_3.3.2018
MAN Diesel & Turbo (2013) Propulsion Trends in Container Vessels. Retrieved March 3,2019 from http://www.mandieselturbo.com/files/news/filesof4672/5510-0040-01ppr_low.pdf
Mysteel Global(2019). Retrieved March 1, 2019, from https://www.mysteel.net/
Psaraftis, H. N., & Kontovas, C. A. (2009). CO 2 emission statistics for the world commercial fleet. WMU Journal of Maritime Affairs, 8(1), 1-25.
Qiu, R., Xu, J., & Zeng, Z. (2017). Carbon emission allowance allocation with a mixed mechanism in air passenger transport. Journal of Environmental Management, 200, 204-216.
Trivyza, N. L., Rentizelas, A., & Theotokatos, G. (2018). A novel multi-objective decision support method for ship energy systems synthesis to enhance sustainability. Energy Conversion and Management, 168, 128-149.
Teekay Corporation(2019). Retrieved March 3, 2019, from https://www.teekay.com/about-us/fleet/
UNCTAD. (2018). Review of Maritime Transport 2018. Retrieved May 02, 2019 from https://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf
Wan, Z., el Makhloufi, A., Chen, Y., & Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine Pollution Bulletin, 126, 428-435.
Wang, K., Fu, X., & Luo, M. (2015). Modeling the impacts of alternative emission trading schemes on international shipping. Transportation Research Part A: Policy and Practice, 77, 35-49.
Xu, J., Qiu, R., & Lv, C. (2016). Carbon emission allowance allocation with cap and trade mechanism in air passenger transport. Journal of Cleaner Production, 131, 308-320.
Zhu, M., Yuen, K. F., Ge, J. W., & Li, K. X. (2018). Impact of maritime emissions trading system on fleet deployment and mitigation of CO2 emission. Transportation Research Part D: Transport and Environment, 62, 474-488.