簡易檢索 / 詳目顯示

研究生: 蔡元融
Tsai, Yuan-Jung
論文名稱: 流域水砂生產及運動模式之研究
Numerical Study on the Yield and Runoff Process of Water and Sediment in Watershed
指導教授: 謝正倫
Shieh, Chjeng-Lun
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 161
中文關鍵詞: 土砂生產崩塌表土沖蝕非均值輸砂河道動床
外文關鍵詞: Sediment Yield, Landslide, Soil erosion, Nonuniform Sediment Transportation, Movable Bed
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究根據流域水、砂生產及運動過程,建立水、砂生產及運動模式,用以模擬集水區內由降雨所衍生之水、砂運動過程,包含地表漫地流與表土沖蝕、地下水流及淺層崩塌等水、砂生產過程與河道渠流、非均質輸砂以及動床演算等水、砂運動過程,除模式之開發外,更針對模式實用性,建立參數設定與率定、驗證流程,大幅降低模式使用門檻;本研究所提出之模式為一結合坡面與水系之準二維格網系統,不但降低傳統二維模式在計算時間與網格配置受限之缺點,更在坡面系統上建立真實空間網格,使模式對於山區土砂生產過程能有更高精度之模擬。
    完成之模式除了基本之守恆性、穩定性,亦針對使用參數進行敏感度分析,以增加模式使用之便利性,而最後本研究針對大安溪流域內烏石坑集水區於2005年至今之水、砂運動過程進行模擬,模擬成果良好,顯示本研究所發展之模式相當適合於山區河川之水、砂生產及運動過程。

    In Taiwan, the catastrophic typhoon is an important factor to trigger serious landslides in mountains. For example, Typhoon Morakot in 2009 caused 39,492 hectares for landslide areas. The sediments yield from landslides triggered the mass movement in the mountains and caused serious hazards. In order to make the manage plan for watersheds, an applicable numerical model is needed to estimate the mass movement. In this study, the purpose of this research is to establish a model for sediment yield and transportation in a watershed. The model can be simulating the process of sediment yield and transportation in a watershed during rainfall. The processes of sediment yield and transportation, which including several major mechanisms, runoff, soil erosion, groundwater, shallow landslide, channel flow, bed load, suspended load ,river bed and sediment size variation are established in this model. The scheme of the model is setup as quasi-two dimension model and based on mass conservation. This scheme can shorten lots time in simulation, and shows more detail terrain characteristic in special scale, resulting in sediment yield and transportation can be accurately assessed.
    The conservation, stability, and sensitivity analysis of this model are also preceded in this research. The result shows that conservation of runoffs and sediment is accurate, and the simulation is very stable in common cases. Furthermore, the results of sensitivity analysis presents that infiltration velocity, hydraulic conductivity and slope gradient of the hill are the most significant parameters. Finally, the Wushihkeng watershed in Central Taiwan is selected to simulate the process of sediment yield and transportation during 2005 to 2011 by this model. The simulation shows this model could provide good result at sediment movement in watershed. So the model is effective in watershed management.

    摘要 i Abstract ii 誌謝 iii 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xi 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究流程 3 1-4 本文架構 5 第二章 文獻回顧 7 2-1 集水區水、砂生產及運動理論 7 2-1-1 集水區產水理論 8 2-2-2 集水區產砂理論 10 2-2-3 河道水砂運動理論 13 2-2 現有土砂模式回顧 20 2-1-1 集水區水、砂生產模式 20 2-1-2 河道水、砂運動模式 25 第三章 流域水砂生產及運動理論 34 3-1 流域水砂生產及運動過程 34 3-1-1 流域水、砂生產及運動過程 34 3-1-2 流域水、砂生產及運動系統化 37 3-2 集水區降雨-逕流過程 39 3-2-1 入滲與超滲降雨 39 3-2-2 地表漫地流 40 3-2-3 地下水流 41 3-3 集水區土砂生產過程 42 3-3-1 地表沖蝕 42 3-3-2 淺層崩塌 43 3-3 集水區水、砂輸出理論 45 3-4 下游河道水理分析 47 3-4-1 一維緩變量流方程式 47 3-4-2 人工黏滯性 49 3-4-3 堰流方程式 50 3-5 河道輸砂理論 51 3-5-1 均質砂輸砂理論 51 3-5-2 非均質砂之輸砂 56 3-5-3 輸砂理論之修正 60 3-6 底床變動方程式 61 3-6-1 均質砂之河床變動 61 3-6-2 非均質輸砂之河床變動 63 第四章 流域水砂生產及運動模式建立 65 4-1 流域水砂生產及運動模式離散方法 65 4-2 集水區土砂生產計算差分方程式 68 4-2-1 集水區土砂生產模組計算網格 68 4-2-2 漫地流差分方程式 69 4-2-3 地下水流差分方程式 70 4-2-3 集水區河道水流差分方程式 71 4-2-4 集水區土砂生產及輸送計算 72 4-3 河道水、砂運動模式離散方法 73 4-3-1 河道水、砂運動模組計算網格 73 4-3-2 水理計算差分方程式 74 4-3-3 河道輸砂及底床變動差分式 76 4-4 初始條件與邊界條件及交換 79 4-4-1 集水區土砂生產模組 79 4-4-2 河道土砂運動模組 80 4-5 模式計算流程 83 第五章 模式測試與分析 85 5-1 集水區土砂生產模組之測試 85 5-1-1 計算穩定性分析 90 5-1-2 水流守恆性分析 92 5-1-3 土砂守恆性分析 94 5-1-4 參數敏感度分析 97 5-2 河道水砂運動模組之測試 101 5-2-1 穩定性分析 106 5-2-2 水流守恆性分析 108 5-1-4 土砂守恆性分析 110 5-2-4 參數敏感性分析 114 第六章 模式應用 116 6-1 參數設定方法 116 6-1-1 計算網格生成 116 6-1-2 水文參數設定方法 120 6-1-3 地文參數設定方法 121 6-2 模式應用:烏石坑集水區 126 6-2-1 研究區域介紹 126 6-2-2 參數設定 131 6-2-3 重大歷史事件分析 136 6-2-4 集水區長期水、砂運動分析 142 第七章 結論與建議 148 7-1 結論 148 7-2 建議 150 參考文獻 151 個人簡歷 159 附錄A 水文參數參考值 A1 附錄B 地文參數參考值 A8

    1.林俐玲、林文英,水蝕推估模式WEPP之評估與驗證,中華水土保持學報,第28期第2卷,第145-156頁,1997。
    2.洪如江,初等工程地質學大綱,地工技術研究發展基金會,第105-116頁,1998。
    3.連惠邦、趙世照,溪床堆積土體崩壞模式及其土石流化之研究,中華水土保持學報,第27期第3卷,第175-183頁,1996。
    4.陳正炎、何智武,推移載輸砂公式通式化之初步研究,臺灣水利,第42卷第1期,第25 - 37頁,1994。
    5.陳正炎、黃宏信、劉希昇,推移載輸砂模式之通式化研究,水保技術,第3卷第3期,第132-144頁,2008。
    6.鄭皆達、謝在郎,石門水庫集水區泥砂生產與水文特性之關係,中華水土保持學報,第28期第2卷,第1-9頁,1997。
    7.蔡智恆、陳尚華、蔡長泰,懸浮載運輸對沖積河流複式斷面底床演變之影響,臺灣水利,第49卷第3期,第14 - 29頁,2001。
    8.謝正倫、黃進坤、劉長齡,亞臨界流況下水庫淤沙特性之一維數值模擬,臺灣水利,第40卷第1期,第67-78頁,1992。
    9.謝正倫、黃進坤、劉長齡,超臨界流況下水庫淤沙特性之一維數值模擬,臺灣水利,第40卷第2期,第46-55頁,1992。
    10.西田孝明, Shock Wave Simulations by Finite Difference Schemes, 数理解析研究所講究録,第1353巻,第202-213頁,2004。
    11.李振裕,集水區水砂生產及輸送之整合研究,國立成功大學水利及海洋工程研究所碩士論文,2004。
    12.李懷恩,深槽蜿蜒之複式斷面直渠之水理研究,國立成功大學水利及海洋工程研究所碩士論文,2007。
    13.林建仲,土石流發生特性之初步研究,國立成功大學水利及海洋工程研究所碩士論文,2000。
    14.林孟毅,非均勻底床坡度明渠之不恆定流之數值模擬,國立台灣大學土木工程學研究所碩士論文,2003。
    15.吳榮瑜,遮蔽效應對混合粒徑輸砂量之影響探討,國立台灣大學生物資源暨農學院生物環境系統工程系碩士論文,2007。
    16.柯欽彬,擬似定量流與變量流模擬在台灣河川適用性之討論,逢甲大學土木及水利工程研究所碩士論文,2003。
    17.洪毓華,AGNPS應用在小集水區推估土壤流失量與逕流量之探討,國立中興大學水土保持學系碩士論文,1991。
    18.陳俞旭,地震對崩塌與土石流發生影響之研究,國立成功大學水利及海洋工程研究所博士論文,2008。
    19.葉正旭,山區集水區水理特性之模擬,國立成功大學水利及海洋工程研究所碩士論文,2002。
    20.鄧學謙,半三維崩塌機制研究,中興大學水土保持學系碩士論文,1998。
    21.歐陽元淳,水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立臺灣大學地理環境資源研究所碩士論文,2003。
    22.蔡元芳,土石流扇狀地特性之研究,國立成功大學水利及海洋工程研究所博士論文,1999。
    23.蔡元融,集水區土砂生產及輸送模式之研究,國立成功大學水利及海洋工程研究所碩士論文,2005。
    24.蔡明璋,複式斷面河道一維與平面二維水理現象模擬之模擬研究,國立成功大學水利與海洋工程研究所碩士論文,2004。
    25.劉宗和,集集攔河堰底床沖淤與排砂之二維數值模擬之研究,國立成功大學水利及海洋工程研究所碩士論文,2006。
    26.謝佳玲,不同土壤沖蝕模式推估土壤流失量之比較,國立中興大學水土保持學系碩士論文,1999。
    27.謝孟荃,混合粒徑輸砂量估算之研究,國立台灣大學生物環境系統工程學研究所碩士論文,2005。
    28.簡鉦哲,地文性土壤沖淤模式之研究,國立成功大學水利及海洋工程研究所碩士論文,2001。
    29.簡如宏,台灣集水區土壤沖蝕推估指標模式之建立,國立中興大學水土保持學系碩士論文,1996。
    30.陳信雄,崩塌地調查與分析,勃海堂文化公司,1995。
    31.中華水土保持學會,行政院農業委員會水土保持技術規範,2000。
    32.土木學會,水理公式集,日本,1999。
    33.吉川秀夫,流砂の水理學,丸善株式會社,日本,1985。
    34.(社)砂防学会編:山地河川における河床変動の数値計算法,第55頁,2000。
    35.中津川誠、清水康行,現場のための水理学,北海道開発局土木試験所河川研究室,1988。
    36.芦田和男、江頭進治、中川一,21世紀の河川学,京都大学学術出版会,2008。
    37.經濟部水資源局,流域土砂管理模式之研究計畫報告,2002。
    38.農委會林務局東勢林區管理處,烏石坑流域土砂觀測計畫報告,2004。
    39.農委會林務局東勢林區管理處,烏石坑流域土砂觀測計畫報告,2005。
    40.農委會林務局東勢林區管理處,烏石坑溪河床變化觀測計畫成果報,2006。
    41.Asch Th. W. J., Van, J. Buma, L. P. H. Van Beek, A view on some hydrological triggering systems in landslides, Geomorphology, 30, pp.25-32, 1999.
    42.Ackers, P. and White, W. R., Sediment transport: new approach and analysis, Journal of the Hydraulic Division, ASCE, 99(11), pp.2041-2060, 1973.
    43.Apsley, D.D., and Stansby, P.K., Bed-Load Sediment Transport on Large Slopes: Model Formulation and Implementation within a RANS Solver, Journal of Hydraulic Engineering Research, pp.1440-1451, 2008.
    44.Aricò, C., and Tucciarelli, T., Diffusive Modeling of Aggradation and Degradation in Artificial Channels., Journal of Hydraulic Engineering Research, pp.1079-1088, 2008
    45.Bagnold, R. A., Auto-Suspension of Transported Sediment; Turbidity Currents, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 265(1322), pp.314-319, 1962.
    46.Bathurst, J. C., W. H., Graf, and Cao, H. H., Bed load Discharge Equations for Steep Mountain Rivers., In: Sediment Transport in Gravel-Bed Rivers, John Wiley & Sons Ltd., pp.453-476, 1987.
    47.Bdour, A., and Wicklein, E., One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams, Journal of Hydraulic Research, 42(4), pp. 1-19, 2004.
    48.Borga, Dalla Fontana, Cazorzi, Analysis of rainfall-triggered shallow land sliding using a quasi-dynamic wetness index, 1998.
    49.Bennett, J. P., Concepts of mathematical modeling of sediment yield, Water Resources Research, 10(3), pp.485-492, 1974.
    50.C.J. van Westen, F. Lulie Getahun, Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models, Geomorphology, 54, pp.77-89, 2003.
    51.Castro Dı´az, M.J., Ferna´ndez-Nieto, E.D., Ferreiro, A.M. ,Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods, Computers & Fluids, 37, pp.299-316, 2008.
    52.Chen, D., and Duan, J.G. ,Case Study: Two-Dimensional Model Simulation of Channel Migration Processes in West Jordan River, Utah., Journal of hydraulic engineering, pp.315-327, 2008.
    53.Chen, D., and Duan, J.G., Modeling width adjustment in meandering channels, Journal of Hydrology, 321, pp.59-76, 2006.
    54.Cheng, N.S., Comparison of Settling-Velocity-Based Formulas for Threshold of Sediment Motion, Journal of Hydraulic Engineering Research, pp.1136-1141, 2008.
    55.Colby, B. R., Practical computations of bed-material discharge, Journal of the Hydraulics Division, ASCE, 90(2), 1964.
    56.Coraci, E., Umgiesser, G., and, Zonta, R., Hydrodynamic and sediment transport modelling in the canals of Venice (Italy), Estuarine, Coastal and Shelf Science, 75, pp.250-260, 2007.
    57.Cui, Y., Wooster, J.K., Venditti, J.G., Dusterhoff, S.R., Dietrich, W.E., and Sklar, L.S. ,Simulating Sediment Transport in a Flume with Forced Pool-Riffle Morphology: Examinations of Two One-Dimensional Numerical Models, Journal of Hydraulic Engineering Research, pp.892-904, 2008.
    58.Dietrich, Reiss, Hsu, and Montgomery, A process-based model for colluvial soil depth and shallow land sliding using digital elevation data, Hydrological Processes, 9, pp.383-400, 1995
    59.Dey, S., and Papanicolaou, A., Sediment Threshold under Stream Flow: A State-of-the-Art Review, Journal of Civil Engineering, 12(1), pp.45-60., 2008.
    60.Duan, J.G., Simulation of Flow and Mass Dispersion in Meandering, Journal of Hydraulic Engineering Research, pp.964-976, 2004.
    61.Duan, J.G., and Nanda, S.K., Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field, Journal of Hydrology, 327, pp.426-437, 2006.
    62.Einstein, H. A. ,The Bed-load Function for Sediment Transport in Open Channel Flows., Tech. Bull., 1026, U.S. Department of Agriculture, Soil Conservation Service, 1950.
    63.Einstein, H. A., and Chien, N., Second approximation to the solution of suspended-load theory, University of California, Institute of Engineering Research, 3, 1954.
    64.Einstein, H. A., and Chien, N., Effects of heavy sediment concentration near the bed on velocity and sediment distribution., MRD Sediment Ser. , 8, University of California at Berkeley, Institute of Engineering Research, Berkeley, California, 1955.
    65.Engelund, F., and Hansen, E., A monograph on sediment transport in alluvial streams, Teknisk Forlag, Copenhagen, 1972.
    66.Francalanci, S., and Solari, L., Bed-Load Transport Equation on Arbitrarily Sloping Beds, Journal of Hydraulic Engineering Research, pp.110-115, 2008.
    67.Gao, P., Transition between Two Bed-Load Transport Regimes: Saltation and Sheet Flow, Journal of Hydraulic Engineering Research, pp.340-349, 2008.
    68.Greimann, B., Lai, Y., and Huang, J., Two-Dimensional Total Sediment Load Model Equations, Journal of Hydraulic Engineering Research, pp.1142-1146, 2008.
    69.FitzHugha, T. W., D. S. Mackayb, Impacts of input parameter spatial aggregation on an agricultural non-point source pollution model, Journal of Hydrology, 236, pp.35-53, 2000.
    70.Holly, F. M., and Rahuel, J. L., New numerical/physical framework for mobile-bed modeling. Part 1: Numerical and physical principles, Journal of Hydraulic Engineering Research, 28(4), pp.401-416, 1990.
    71.Hsu, M.H., Chen, C.H., and Teng, W.H., An Arbitrary Lagrangian–Eulerian finite difference method for computations of free surface flows, Journal of Hydraulic Engineering Research, 39(5), pp.481-491, 2001.
    72.Ikeda, S., Parker, G., Sawai, K., Bend theory of river meanders. Part 1. Linear development, Journal of Fluid mechanic, 112, pp.363-377, 1981.
    73.Krishnappan, B.G., Recent advances in basic and applied research in cohesive sediment transport in aquatic systems, Canadian Journal of Civil Engineering, 34, pp.731-743, 2007.
    74.Kung, H.Y., Ku, H.H., Wu, C.I., and Lin, C.Y., Intelligent and situation-aware pervasive system to support debris-flow disaster prediction and alerting in Taiwan, Journal of Network and Computer Applications, 31, pp.1-18, 2008.
    75.Kothyari, U. C., Tiwari, A. K., Singh, R., Estimation of temporal variation of sediment yield from small catchments through the kinematics method, Journal of Hydrology, 203, pp.39-57, 1997.
    76.Lai, C., Modeling alluvial-channel flow by multimode characteristic method, Journal of Engineering Mechanics, 117(1), 1991.
    77.Langendoen, E.J., and Alonso, C.V., Modeling the evolution of incised streams: I. model formulation and validation of flow and streambed evolution components, Journal of Hydraulic Engineering Research, pp.749-762, 2008.
    78.Lee, H.Y., and Hsieh, H.M., Numerical simulations of scour and deposition in a channel network, International Journal of Sediment Research, 18(1). pp. 32-49, 2003.
    79.Linares, M., and Belleudy, P., Critical shear stress of bimodal sediment in sand-gravel rivers, Journal of Hydraulic Engineering Research, pp.555-559, 2007.
    80.Lal, R., Soil degradation by erosion, Land Degrade Develop, 12, pp.519-539, 2001.
    81.Meyer-Peter, E., and R., Müller, Formulae for Bed load Transport, The International Association for Hydro-Environment Engineering and Research, 2nd Meeting, Stockholm, pp.39-65, 1948.
    82.Miller, D.J., and Burnett, K.M., A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA, Geomorphology, 94, pp.184-205, 2008.
    83.Molinas, A., and Wu, B.S., Comparison of fractional bed-material load computation methods in sand-bed channels, Earth Surface Processes and Landforms, 25, pp.1045-1068, 2000.
    84.Mueller, E.N., Batalla, R.J., Garcia, C., and Bronstert, A., Modeling Bed-Load Rates from Fine Grain-Size Patches during Small Floods in a Gravel-Bed River, Journal of Hydraulic Engineering Research, pp.1430-1439, 2008.
    85.Nagata, N., Hosoda, T., and Muramoto, Y., Numerical analysis of river channel processes with bank erosion., Journal of Hydraulic Engineering Research, pp.243-252, 2000.
    86.Papanicolaou, A., Bdour, A., and Wicklein, E., A numerical model for the study of sediment transport in steep mountain streams, Journal of Hydraulic Engineering Research, 42(4), pp.357-366, 2004.
    87.Papanicolaou, A.N.T., Elhakeem, M., Krallis, G., Prakash, S., and Edinger, J. Sediment Transport Modeling Review-Current and Future Developments, Journal of Hydraulic Engineering Research, pp.1-14, 2008.
    88.Parker, G., Klingeman, P. C., and McLean, D. G., Bed load and size distribution in paved gravel-bed streams, Journal of the Hydraulics Division, 108(4), pp. 544-571, 1982.
    89.Rickenmann, D., Sediment transport in Swiss torrents, Earth Surface Processes and Landforms, 22, pp.937-951, 1997.
    90.Rdoriguez, J.F., Bombardelli, F.A., Garcia, M.H., Frothingham, K., Rhoads, B.L., and Abad, J.D., High-resolution numerical simulation of flow through a highly sinuous river reach, Water Resources Management, 18, pp.177-199, 2004.
    91.Rouse, H., Modern conceptions of the mechanics of turbulence, Transaction of the fluid turbulence, ASCE, 102, pp.4630, 1937.
    92.Rubey, W. W., Setting velocities of gravel, sand and silt particles, American Journal of Science, 25, pp.325-338, 1933.
    93.She, K., Trim, L., and Pope, D.J., Threshold of motion of natural sediment particles in oscillatory flows, Journal of Coastal Research, 22(3), pp.701-709, 2006.
    94.Simons, R.K., Canali, G.E., Anderson-Newton, G.T., and Cotton, G. K. ,Sediment transport modeling, Calibration, Verification, and Evaluation., Soil and Sediment Contamination, 9(3), pp.261-289, 2000.
    95.Sinnakaudan, S. K., Ghani, A. Ab, Ahmad, M. S. S., and Zakaria, N. A. , Multiple Linear Regression Model for Total Bed Material Load Prediction, Journal of Hydraulic Engineering Research, 132(5), pp.521-528, 2006.
    96.Siviglia, A., Nobile, G., and Colombini, M., Quasi-conservative formulation of the one-dimensional Saint-Venant-Exner Model., Journal of Hydraulic Engineering Research, pp.1521-1526, 2008.
    97.Smart, G. M., Sediment Transport Formula for Steep Channels., Journal of Hydraulic Engineering Research, ASCE, 110(3), pp.267-276, 1984.
    98.Smith, B.P.G., Naden, P.S., Leeks, G.J.L., and Wass, P.D., The influence of storm events on fine sediment transport, erosion and deposition within a reach of the River Swale, Yorkshire, UK., Science of the Total Environment, pp.314-316, 2003.
    99.Van Rijn, L.C., Sediment transport, part I: bed load transport, Journal of Hydraulic Engineering Research, ASCE, pp. 1431-1456, 1984.
    100.Van Rijn, L. C., Sediment transport, part II: suspended load transport, Journal of Hydraulic Engineering Research, ASCE, 110(11), pp.1613-1641, 1984.
    101.Van Rijn, L. C., Sediment transport, part III: bed forms and alluvial roughness, Journal of Hydraulic Engineering Research, ASCE, 110(12), pp.1733-1754, 1984.
    102.Wang, G., Fu, X., Huang, Y., and Huang, G., Analysis of Suspended Sediment Transport in Open-Channel Flows: Kinetic-Model-Based Simulation, Journal of Hydraulic Engineering Research, pp.328-339, 2008.
    103.Wright, S., and Parker, G., Density stratification effects in sand-bed rivers, Journal of Hydraulic Engineering Research, ASCE, 130(8), pp.783-795, 2004.
    104.Wu, B., Molinas, A., and Julien, P. Y., Bed-Material Load Computations for Non-uniform Sediments, Journal of Hydraulic Engineering Research, pp.1002-1012, 2004.
    105.Wu, W., Vieira, D.A., and Wang, S. S. Y., One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks, Journal of Hydraulic Engineering Research, pp.914-923, 2004.
    106.Wischmeier, W.H., and D.D. Smith, Predicting Rainfall Erosion Losses: A guide to conservation department of agricultural, U.S. Department of Agriculture, Agricultural Handbook, 537, 1978.
    107.Yalin, M. S., and Karahan, E., Inception of Sediment Transport., Journal of Hydraulic Engineering Research, ASCE, 105(11), pp.1433-1443, 1979.
    108.Yang, C. T., Incipient motion and sediment transport, Journal of the Hydraulics Division, ASCE, 99(10), pp.1679-1704, 1973.
    109.Yang, C. T., Unit Stream Power Equation for Gravel, Journal of Hydraulic Engineering Research, ASCE, 110(12), pp.1783-1798, 1984.
    110.Chang, H.H., FLUVIAL-12 Mathematical Model for Erodible Channels, User’s Manual, 1972.
    111.Hamrick, J. M. ,EFDC1D: A One dimensional hydrodynamic and sediment transport model for river and stream networks, model theory, and users guide., Technical Rep., U.S. EPA National Exposure Research Laboratory, Athens, Ga. and U.S. EPA Office of Science and Technology, Washington, D.C., 2001.
    112.Karim, M.F., IALLUVIAL2: A Computer Program for Water and Sediment Routing in Alluvial Channels, US Army Corps of Engineers Hydrologic Engineering Center, 1982.
    113.MIKE 11: A Modeling System for Rivers and Channels, DHI, April, 2003.
    114.Molinas, A., and Yang, C. T., Computer program user's manual for GSTARS, 1986.
    115.Simons D. B., and F., Sentürk, Sediment Transport Technology, Water Resources Publications Fort Collins, Colorado, 80522, USA, 1977.
    116.US Army Corps of Engineers Hydrologic Engineering Center, HEC-1 Flood Hydrograph Package User’s Manual, pp.25-30, 1998.
    117.U.S. Army Corps of Engineers HEC-6, Scour and Depositional in Rivers and Reservoir, User's Manual, 1991.
    118.US Army Corps of Engineers Hydrologic Engineering Center, Hydraulic Reference manual, 1977.
    119.Yang, C.T., and Simões, F.J.M., GSTARS 3.0: A Numerical Model for Reservoir Sedimentation, 1979.

    下載圖示 校內:2014-07-30公開
    校外:2015-07-30公開
    QR CODE