| 研究生: |
潘柏瑋 Pan, Bo-Wei |
|---|---|
| 論文名稱: |
中風病患踝關節復健用機器人之研究 Development of a Robot for Ankle Rehabilitation in Stroke Patients |
| 指導教授: |
林宙晴
Lin, Chou-Ching K. 朱銘祥 Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 動剛性 、被動拉伸 、自主運動 |
| 外文關鍵詞: | dynamic stiffness, voluntary movement, passive stretch |
| 相關次數: | 點閱:164 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前中風病人所接受的復健治療,皆由醫師或物理治療師利用徒手或輔具對病人施予各種手法以誘發原有的自主控制能力,這些手法包括引導病人做出動作,或是在病人運動過程中施加阻扭力或是助扭力,最後再以定性量測或觀察做為療效評估。本研究目的是發展一台踝關節復健用機器人,由機器人來達成物理治療師的手法,並透過機器人上的感測器精確量測相關資料,由量化數據來做為療效的評估。
機器人設計能在矢狀面上做一維運動,能應用於病患踝關節背屈與蹠屈運動。機器人透過模糊控制器來實現定位與扭力控制。在被動拉伸訓練,藉由精確定位引導病患在可動域內運動;在自主出力運動,機器人會在病患進行軌跡追蹤途中,給予阻扭力或助扭力。在運動過程中,機器人量得病人踝關節的移動位置與扭力,做離線資料分析,並用客觀量化的數據替代主觀的定性評估。
本研究已完成機器人的硬軟體系統開發,並具備有多種運動模式。在5位常人受測者實驗中,利用機器人的各種運動模式配合關節被動剛性、軌跡追蹤誤差均方根及動剛性指標,來明瞭常人的踝關節機械性質與運動控制能力。總之,本研究驗證機器人在復健上的可行性,且可成功模擬物理治療師引導踝關節的背屈與蹠屈運動或是給予阻扭力與助扭力。
The physical therapists use various facilitation patterns by hands or instruments at rehabilitation of the stroke patients. The patterns include guiding movement of patients’ ankle or applying resistance or assistance force when active movements are performed. By qualitative assessments and observations, they can assess progress of rehabilitation. The goal of this thesis is to develop a robot for ankle rehabilitation by performing various facilitation patterns. The sensors of robot can accurately measure biomechanical variables and provide objective assessments.
The robot is designed for ankle motion on the sagittal plane. It is applied to dorsiflexion and plantarflexion movement in seated subjects. A fuzzy controller is implemented to realize position and torque controls. For passive stretch, the robot can guide the subject’s ankle throughout the range of motion to extreme dorsiflexion and plantarflexion. For voluntary movement, the robot can apply resistance or assistance torque when patients performed trajectory tracking. During movement, the encoder and the torque sensor record the position of ankle and the reactive torque between robot and patient’s ankle. Off-line analyses of these biomechanical data were used to assess progress of ankle rehabilitation quantitatively.
The robot system has been built by integrating a mechanism, an actuator, a controller, system software and a man-machine interface. Two treatment movements, namely passive stretch and trajectory tracking were realized. Five normal subjects were recruited for assessing their ankle controllability by measuring the dynamic stiffness of their ankles. The experimental results show that the robot might be applicable for ankle rehabilitation of stroke patients. The robot can imitate a physical therapists to guide subject or apply adequate resistant or assistant torque on subjects when their ankles are performing trajectory tracking.
1. 行政院衛生署,台灣地區2010年衛生指標白皮書,2005.
2. H. H. Hu, W. Y. Sheng, F. L. Chu, C. F. Lan, B. N. Chiang, “Incidence of stroke in Taiwan,” Stroke, vol. 23, pp. 1237-1241, 1992.
3. M. A. Pagliarulo, Introduction to physical therapy, St Louis, 2001.
4. R. W. Bohannon, M. D. Smith, “Interrater reliability of a modified Ashworth scale of muscle spasticity,” Physical Therapy, vol. 67, pp. 206-7, 1987.
5. J. Romkes, R. Brunner, “Comparison of a dynamic and a hinged ankle-foot orthosis by gait analysis in patients with hemiplegiccerebral palsy,” Gait and Posture, vol. 18, pp. 18-24, 2002.
6. B. Brouwer, L. K. Davidson, S. J. Olney, “Serial casting in idiopathic toe-walkers and children with spastic cerebral palsy,” J. of Pediatric Orthopedics, vol. 20, pp. 221-5, 2000.
7. C. F. Kunkel, A. M. E. Scremin, B. Eisenberg, J. F. Garcia, S. Roberts, S. Martinez, “Effect of “standing” on spasticity, contracture, and osteoporosis paralyzed males,” Arch. of Phys. Med. and Rehabil., vol. 74, pp. 73-8, 1993.
8. K. H. Tsai, C. Y. Yeh, H. Y Chang, J. J. Chen, ”Effects of a single session of prolonged muscle stretch on spastic muscle of stroke patients, ” Proceedings of the National Science Council, Republic of China- Part B, Life Sciences, vol. 25, pp. 76-81, 2001.
9. A. M. Moseley, “The effect of casting combined with stretching on passive ankle dorsiflexion in adults with traumatic head injuries,” Physical therapy, vol. 77, pp. 240-247, 1997.
10. 陳佳萬,朱耀堂,郭有順,腳踝關節復健機,中華民國專利,專利公告號:555555,2003.
11. E. Bressel, J. P. McNair, “The effect of prolonged static and cyclic stretching on ankle joint stiffness, torque relaxation, and gait in people with stroke,” Physical Therapy, vol. 82, pp. 880-7, 2002.
12. M. S. Ju, C.-C.K. Lin, D. H. Lin, I.-S. H, S.M. Chen, “A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot, “ IEEE Tran. On Neur. Sys. and Rehabil. Eng., vol. 13, pp. 349-358, 2005.
13. L. Q. Zhang, S. G. Chung, Z. Bai, D. Xu, et al, ”Intelligent stretching of ankle joints with contracture/spasticity, ” IEEE Tran. On Neur. Sys. and Rehabil. Eng., vol. 10, pp. 149-57, 2002.
14. L. Q. Zhang, S. G. Chung, A. F. Lin, “A protable intelligent stretching device for treating spasticity and contracture with outcome evaluation,” Proceedings of the Second Joint EMBS/BMES Conference, pp.23-26, October, 2002.
15. D. A. Winter, Biomechanics of human movement, 1979.
16. H. Asada, J.-J. E. Slotine, Robot Analysis and Control, MIT.
17. G. H. Lim, “ Comparison and application of three integral-improverd methods on conventional fuzzy control stragety,” IEEE ICIT’02, 2002.
18. T. Yoshikawa, Foundations of Robotics : Analysis And Control, MIT Press, Cambridge, 1990.
19. 陳昭榮,朱銘祥,林宙晴,”外加扭矩對中風病人肘關節主動角度軌跡追蹤控制之研究”,中國機械工程學會第十六屆全國學術研討會論文集,pp. 463-468, 1999.
20. R. F. Kirsch, R. E. Kearney, P. E. Crago, “Dynamic Stiffness and Measurement and the Control of Movement,” IEEE, pp. 428-429,1994.
21. 董憲奇,朱銘祥,林宙晴,黃英修,程淑敏,”肘關節神經用復健機器人之改進與臨床評估”,中華民國生物醫學工程科技研討會,pp. 45, 2001(壁報論文競賽佳作).
22. D. B. Wilson, W. J. Wilson, 沈清良譯, 人體解剖學, 1992.