簡易檢索 / 詳目顯示

研究生: 吳雅玲
Wu, Ya-Ling
論文名稱: 氮化鉻中間層對半極性氮化鎵薄膜結構及光性影響之研究
Structure and Optical Properties of Semipolar GaN Thin Film on m-plane Sapphire with CrN Interlayer
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 68
中文關鍵詞: 氮化鎵薄膜半極性分子束磊晶氮化鉻中間層
外文關鍵詞: GaN thin film, semipolar, MBE, CrN interlayer
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討氮化鉻緩衝層對氮化鎵薄膜的影響,相較於未使用緩衝層的情況,20 nm厚度的氮化鉻緩衝層能改善後續氮化鎵的結晶品質及光學性質。由SEM表面形貌圖得知無氮化鉻緩衝層的氮化鎵薄膜表面有“ㄑ”狀突起,且每個突出端都有缺陷存在;氮化鉻緩衝層20nm厚度的的氮化鎵薄膜表面平整許多;氮化鉻緩衝層40nm厚度的氮化鎵薄膜表面非常不平整且缺現超多。由ω-2Θ及ω掃描兩軸(a軸及c軸)方向的量測結果,有氮化鉻緩衝層20nm厚度的氮化鎵薄膜半高寬均最小,分別為322arcsec,1840 arcsec及1450arcsec,因此證實20 nm厚度的氮化鉻緩衝層能改善後續氮化鎵的結晶品質。再由光致螢光(PL)低溫及變溫量測結果,得知無氮化鉻緩衝層的氮化鎵薄膜除了近能帶發光外,缺陷發光明顯;氮化鉻緩衝層20nm厚度的的氮化鎵薄膜近能帶發光峰強度大半高寬小且缺陷發光峰很微弱;氮化鉻緩衝層40nm厚度的氮化鎵薄膜近能帶發光微弱,反之,缺陷發光峰相對強度大。由此證實20 nm厚度的氮化鉻緩衝層能改善後續氮化鎵的光學性質。

    The results of the SEM image indicate that the surface morphology could be controlled by using different buffer layer. For the GaN film with LT-GaN buffer layers buffer layer, the SEM image with striated morphology overlaid with faceted ‘‘arrow’’ pattern and many pits placed at the corners. Relatively, the SEM images of the GaN films with LT-GaN and CrN buffer layer 20nm did not show the striated morphology and more smooth. However, The surface morphology of the GaN film with LT-GaN and CrN buffer layer 40nm is very rough and includes a lot of dislocations.
    The crystalline characteristics of GaN film with various buffer layer by the HRXRD rocking curves (XRCs) are investigated. The crystal quality of the GaN film with LT-GaN and CrN buffer layer 20nm is the best, since the full width at half maximum (FWHM) in a-axis is the narrowest (1840arcsec). Furthermore, the full width at half maximum (FWHM) in c-axis is also the narrowest(1450 arcsec) of the three samples.
    While we compared to the optical characteristics of the GaN film with various buffer layer , the GaN films with LT-GaN and CrN buffer layer 20nm show the common GaN near bandedge emission (3.47eV) and the defect peaks of GaN film are not obviously. The result, we demonstrate that the crystalline and optical property of GaN thin film has been improved by inserting optimum CrN buffer layer thickness.

    Abstract (in Chinese)............................I Abstract (in English)............................III Contents.........................................V Table Captions...................................VII Figure Captions..................................VIII Chapter 1 Introduction...........................1 1-1 Background...................................1 1-2 Organization.................................9 Chapter 2 Fabrication and Measurement Apparatus..10 2-1 Radio-frequency Plasma-assisted Molecular beam epitaxy (PA-MBE...............................10 2-2 RF Sputtering system..........................15 2-3 Scanning Electron Microscope(SEM).............18 2-4 X-ray Diffraction (XRD).......................20 2-5 Photoluminescence (PL) System.................22 Chapter 3 The Fabrication and Characteristics of GaN thin film with Various Buffer Layers..........25 3-1 Substrate Preparation.........................26 3-2 Fabrication Process...........................26 3-3 Surface Morphology of GaN Thin Film...........30 3-4 Crystalline Characteristics...................34 3-5 Optical Properties............................41 Chapter 4 Conclusions and Future Works............58 4-1 Conclusions...................................58 4-2 Future Works..................................60 Reference.........................................61

    [1]M. E. Lin, S. Strite, and H. Morkoç, in The Encyclopedia
    of Advanced Materials,eds. D. Bloor, M. C. Fleming, R.
    J. Brook, S. Mahajan, R. W. Cahn, pp. 79-96,Pergamon
    Press (1994).
    [2]S. Nakamura, T. Mukai, and M. Senoh, Candela‐class high
    ‐brightness InGaN/AlGaN double‐heterostructure blue‐
    light‐emitting diodes, Appl. Phys. Lett. 64, 1687
    (1994).
    [3]S. Nakamura, T. Mukai, and M. Senoh, High-Power GaN P-N
    Junction Blue-Light-Emitting Diodes, Jpn. J. Appl. Phys.
    30, 1998 (1991).
    [4]E. F. Schubert, Light-Emitting Diodes 2nd edition,
    Cambridge University Press, (2006)
    [5]L. Liu, J.H. Edgar, Substrates for gallium nitride
    epitaxy , Mater. Sci. Eng. R , 37, 61 (2002).
    [6]Willam D. Callister, “Materials Science and Engineering:
    an Introduction”, 7th ed. John Wiley& Sons,Inc,( 2007).
    [7]K. Xu, A. Yoshikawa, Effects of film polarities on InN
    growth by molecular-beam epitaxy, Appl. Phys. Lett., 83,
    251 (2003).
    [8]A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl.
    Phys., 94, 2779 (2003).
    [9]Y. Nanishi, Y. Saito, T. Yamaguchi, Jpn. J. Appl. Phys.,
    42, 2549 (2003).
    [10]R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan,
    A. O. Orlov,G. L. Snider and M. S. Shur, Appl. Phys.
    Lett. 72, 707 (1998).
    [11]T. P. Chow and R. Tyagi, IEEE Trans. Electron. Dev. 41,
    1481(1994).
    [12]S. F. Chichibu, H. Yamaguchi, L. Zhao, M. Kubota, K.
    Okamoto,and H. Ohta, Appl. Phys. Lett., 92, 091912
    (2008).
    [13]J. K. Tsai, Ikai Lo, K. L. Chuang, L. W. Tu, J. H.
    Huang, C. H.Hsieh,and K. Y. Hsieh, J. Appl. Phys., 95,
    460 (2004).
    [14]K. Iwata, H. Asahi, K. Asami, R. Kuroiwa, S. Gonda, J.
    Cryst. Growth, 188, 98 (1998).
    [15]H. Tang and James B. Webb, Appl. Phys. Lett., 74, 2373
    (1999).
    [16]J.C. Vesely, M. Shatzkes, and P.J. Burkhardt, Space-
    charge-limited current flow in gallium nitride thin
    films. Physical Review B, 10 (1974) 582.
    [17]H. Okumura, S. Misawa, S. Yoshida, and E. Sakuma,
    Epitaxial Growth of GaAs and GaN by Gas Source
    Molecular Beam Epitaxy using Organic Group V Compounds.
    Journal of Crystal Growth, 120 (1992) 114.
    [18]A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, and R.
    Ishigami, Nitridation effects of GaP(111)B substrate on
    MOCVD growth of InN. Journal of Crystal Growth,212
    (2000) 379.
    [19]C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M.
    Razeghi, and D.K. Gaskill,Thermal stability of GaN thin
    films grown on (0001) Al2O3, (0112)Al2O3 and (0001)Si
    6H-SiC substrates. Journal of Applied Physics, 76
    (1994) 236.
    [20]R.C. Powell, G.A. Tomasch, Y.-W. Kim, J.A. Thornton,
    and J.E. Greene, Growth of high-resistivity wurtiza and
    zincblende structure single crystal GaN by reactive-ion
    molecular beam epitaxy.Materials Research Society
    Symposium Proceedings, 162 (1990) 525.
    [21]F. Hamdani, M. Yeadon, D.J. Smith, H. Tang, W. Kim, A.
    Salvador,A.E.Botchkarev, J.M. Gibson, A.Y. Polyakov, M.
    Skowronski, and H. Morkoc,Microsturecture and optical
    properties of epitaxial GaN on ZnO (0001) grown by
    reactive molecular beam epitaxy. Journal of Applied
    Physics, 83 (1998) 983.
    [22]A. Kuramata, K. Horino, K. Domen, and K. Shinohara,
    High-quality GaN epitaxial layer grown by metalorganic
    vapor phase epitaxy on (111) MgAl2O4 substrate. Applied
    Physics Letters, 67 (1995) 2521.
    [23]S. Kang, W.A. Doolittle, and A.S. Brown, Electrical and
    structural characterization of AlxGa1-xN/GaN
    heterostructures grown on LiGaO2 substrate.Applied
    Physics Letters, 74 (1999) 3380.
    [24]P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J.
    Menniger, M. Ramsteiner, M.Reiche, and K.H. Ploog,
    Nitride semiconductors free of electrostatic fields for
    efficient white light-emitting diodes. Nature, 406
    (2000) 865.
    [25]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda,
    Metalorganic vapor Phase epitaxial growth of a high
    quality GaN film using an AlN buffer layer. Applied
    Physics Letters, 48 (1986) 353.
    [26]S. Nakamura, GaN Growth Using GaN Buffer Layer. Japan
    Journal of Applied Physics, 30 (1991) L1705.
    [27]N. Grandjean, M. Leroux, M. Laugt, and J. Massies, Gas
    source molecular beam epitaxy of wurtize GaN on
    sapphire substrates using GaN buffer layers. Applied
    Physics Letters, 71 (1997) 240.
    [28]D.D. Koleske, A.E. Wickenden, R.L. Henry, W.J. DeSisto,
    and R.J. Gorman,Growth model for GaN with comparison to
    structural, optical, and electrical properties. Journal
    of Applied Physics, 84 (1998) 1998.
    [29]J.M. Myoung, O. Gluschenkov, K. Kim, and S. Kim, Growth
    kinetics of GaN and effects of flux ratio on the
    properties of GaN films grown by plasma-assisted
    molecular beam epitaxy. Journal of Vacuum Science and
    Technology A, 17 (1999)3019.
    [30]B. Heying, I. Smorchkova, C. Poblenz, C. Elsass, P.
    Fini, S.D. Baars, U. Mishra,and J.S. Speck,
    Optimization of the surface morphologies and electron
    mobilities in GaN grown by plasma-assisted molecular
    beam epitaxy. Applied Physics Letters, 77 (2000) 2885.
    [31]B. Heying, R. Averbeck, L.F. Chen, E. Haus, H.
    Riechert, and J.S. Speck, Control of GaN surface
    morphologies using plasma-assisted molecular beam
    epiaxty.Journal of Applied Physics, 88 (2000) 1855.
    [32]V. Swaminathan and A. T. Macrander, Prentice-Hall, New
    Jersey, (1991) 138
    [33]Sidney Perkowitz, ACADEMIC PRESS New York, (1993) 50
    [34]K. Ploog , In Crystal Growth, Properties and
    Applications. H. C.Freyhard, ed., Berlin: Springer-
    Verlag, Vol. 3, p. 73 (1980).
    [35]A. Y. Cho, Thin Solid Films, 10, 291 (1983).
    [36]A. C. Gossard, In Treatise on Material Science and
    Technology,Preparation and Properties of Thin Films .
    K. N. Tu and R.Rosenberg,eds., New York: Academic
    Press, 24, p. 13 (1982).
    [37]L. L. Chang and K. Ploog, Molecular Beam Epitaxy and
    Heterostructures, Boston: Martinus Nijhoff Publisher.
    (1985)
    [38]E. H. C. Parker, ed. The Technology and Physics of
    Molecular Beam Epitaxy. New York: Plenum Publishing
    Corp. (1986).
    [39]G. J. Davies and D. Williams, In The Technology and
    Physics of Molecular Beam Epitaxy, E. H. C. Parker,
    ed., Boston: Plenum Publishing Corp., 2, 15 (1986).
    [40]C. T. Foxon and J. J. Harris, eds. Molecular Beam
    Epitaxy.Amsterdam: North Holland (1987).
    [41]C. T. Foxon and B. A. Joyce, Growth and
    Characterization of Semiconductors. R. A. Stradling and
    P. C. Klipstein, eds., New York:Adam Hilger, p. 35
    (1990).
    [42]Y.N. Guo, J. Zou, M. Paladugu, H. Wang, Q. Gao, H.H.
    Tan, C. Jagadish, Appl. Phys. Lett. 89 (2006) 231917.
    [43]許廣元, “分子束磊晶成長三族氮化物奈米結構與物理性質之研究”,
    國立成功大學,博士論文(2010).
    [44]R.K. Watts, Vossen and W. Kern, Academic, New York,
    (1978)131-174
    [45]C.Y. Chang and S.M. Sze, ULSI technology, 380
    [46]J.L. Vossen, J.J. Cuomo, Thin Film Processes, (1978) 24
    [47]S.I. Shah, Handbook of Thin Film Process Technology P.A
    3.0.1
    [48]S.M. Sze, VLSI Technology, 387
    [49]P. Ruterana, M. Albrecht and J. Neugebauer, Nitride
    Semiconductors : handbook on materials and devices,
    Wiley-VCH, (2003)
    [50]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B.
    P. Keller, S. P. DenBaars and J. S. Speck, Appl. Phys.
    Lett., 68, 643 (1996)
    [51]M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M.
    Yang, C. H. Hong, K. Y. Lim, D. H. Lim and A.
    Yoshikawa, Appl. Phys. Lett., 77, 2557 (2000)
    [52]Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S.
    Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and
    D. J. Smith, Appl. Phys. Lett., 86, 043108 (2005)
    [53]T. Gu¨hne, Z. Bougrioua, S. Lau¨ t, M. Nemoz, P.
    Venne´gue`s,B. Vinter, M. Leroux, Phys. Rev. B 77,
    075308 (2008)
    [54]5Y. J. Wang, R. X. Wang, G. Q. Li, and S. J. Xu, J.
    Appl. Phys. 106, 013514(2009).
    [55]M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F.
    Semond,J. Massies, P. Gibard, J. Appl. Phys. 86, 3721
    (1999)
    [56]F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev.
    B. 56,R10024 (1997)
    [57]D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard,
    W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. Lett.
    53,2173 (1984)
    [58]A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J.
    Appl.Phys. 100, 023522 (2006)
    [59]T.Tanikawa,D.Rudolph,T.Hikosaka,Y.Honda,M.Yamaguchi,
    N.SawakiJ. Cryst.Growth310(2007)4999.
    [60]X.Ni,Y.Fu,Y.T.Moon,N.Biyikli,H.Morkoc ,J.Cryst.Growth,
    290(2006)166.
    [61]P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S.
    Figge, and D. Hommel, J.Appl. Phys., 98, 093519 (2005).
    [62]R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang,
    and M. A. Khan, Appl. Phys.Lett., 86, 021908 (2005).
    [63]T. B. Wei,z Q. Hu, R. F. Duan, X. C. Wei, J. K. Yang,
    J. X. Wang, Y. P. Zeng,G. H. Wang, and J. M. Li ,
    Journal of The Electrochemical Society, 157 (7) H721-
    H726 (2010)
    [64]T.Guhne, Z.Bougrioua,S.Laugt, M.Nemoz,P.Vennegues,
    B.Vinter , M.Leroux,Phys.Rev.B77 (2008) 075308.
    [65]T.B. Wei , Q.Hu , R.F. Duan , X.C. Wei ,Z.Q. Huo ,J .X.
    Wang , Y.P. Zeng , G.H. Wang, J.M. Li, Journal of
    Crystal Growth , 311(2009) 4153–4157
    [66]B. Arnaudov, T. Paskova, E. M. Goldys, S. Evtimova, and
    B. Monemar, Phys. Rev.B, 64, 045213 (2001).
    [67]M. A. Reshchikov , F. Shahedipour, R. Y. Korotkov, B.
    W. Wessels, and M. P.Ulmer, J. Appl. Phys. , 87, 3351
    (2000).
    [68]T. Gühne, Z. Bougrioua, S. Laügt, M. Nemoz, P.
    Vennéguès, B. Vinter, and M.Leroux , Phys. Rev. B , 77,
    075308 (2008).
    [69]M. Toth, K. Fleischer, and M. R. Phillips , Phys. Rev.
    B, 59 , 1575 (1999).
    [70]I. Vurgaftman and J. R. Meyer, J. Appl. Phys., 94, 3675
    (2003).
    [71]N. Kriouche.M. Leroux . P. Venne´gue`s.M. Nemoz . G.
    Nataf .P. de Mierry “Filtering of Defects in Semipolar
    (11222) GaN Using 2-Steps Lateral Epitaxial
    Overgrowth”,Nanoscale Res Lett (2010) 5:1878–1881
    [72]Bernar, Gil, Group Ⅲ Nitride Semiconductor Compounds.”
    p200.
    [73]M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F.
    Semond, J. Massies, P.Gibart, J. Appl. Phys, 86(1999),
    3721.

    下載圖示 校內:2016-07-27公開
    校外:2016-07-27公開
    QR CODE