簡易檢索 / 詳目顯示

研究生: 王亮超
Wang, Liang-Chao
論文名稱: 免疫調控在缺血性腦中風多元治療之角色探討
The role of immunomodulation in multimodal therapy for ischemic stroke
指導教授: 蔡坤哲
Tsai, Kuen-Jer
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 85
中文關鍵詞: 缺血性腦中風發炎鎂離子乙型還氧化酶抑制劑胸腺前素
外文關鍵詞: ischemia, inflammation, magnesium, cyclooxygenase-2 inhibitor, prothymosin
相關次數: 點閱:109下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中樞神經細胞在缺血失去能量供應後,數分鐘內即會引發一連串的反應而導致細胞壞死,細胞壞死釋放大量化學物質引發後續的的細胞凋亡及發炎反應。發炎及免疫反應在缺血性腦損傷的病理進程中扮演重要角色。對免疫發炎過程的調控,可能有助於減緩急性期的神經損傷。由於缺血性腦中風的病理機轉複雜,針對多個病理機轉的多元治療是目前治療發展的重要趨勢。抗壞死,抗凋亡及抗發炎皆是治療的重要目標。本實驗使用兩種策略來發展缺血性腦中風之治療藥物。 (1)合併使用可能具有療效的製劑以降低個別藥劑之治療劑量及副作用。(2)藉著改變蛋白質的結構調整蛋白質的功能,去除有害的部分,使之能針對多個病理機轉作用而加強其療效。
    鎂離子(Mg2+)在具有拮抗N-甲基-D-天門冬胺酸 (NMDA)之作用,硫酸鎂 (MgSO4)於活體及離體實驗皆被認為可以用來治療缺血性腦中風。然而硫酸鎂有抑制心血管功能之副作用。乙型還氧化酶(COX-2)抑制劑,如nimesulide,因其抗發炎的作用,也被認為可以用於治療血性腦中風,但有效治療劑量高,臨床應用有限。本實驗之第一部分合併使用MgSO4 及 nimesulide 來降低個別藥物的有效劑量,減低副作用,並加強其療效。暫時性缺血性腦中風之大鼠接受不同的治療,包括安慰劑,單獨MgSO4,單獨nimesulide,及複方MgSO4加nimesulide治療。治療的結果予以壞死區域染色評估及行為評估。並評估各治療藥物對發炎反應相關因子(COX-2, MPO, PGE2,)及細胞凋亡因子(caspase 3) 的影響。我們的實驗結果發現,單獨低劑量的MgSO4,或nimesulide 無法治療缺血性腦中風,而合併兩者使用可以減少壞死面積及降低神經功能損傷。複方使用也可以降低發炎因子及細胞凋亡因子的表現,顯示其抗發炎及抗凋亡的效果。
    有研究指出,胸腺前素(ProT)對腦缺血性損傷有抗壞死的保護作用。然而胸腺前素同時也具有促進發炎反應的功用。缺血後的發炎反應將加重組織損傷。胸腺前素促進發炎反應的訊息和入核訊息都在該蛋白質的碳端 (a.a.109~113)。我們認為,將入核訊息切除後,無入核訊息的胸腺前素(ProTNLS)可以抑制其促進發炎反應的能力,從而加強其對缺血性腦中風的療效。本實驗之第二部分我們以動物模式驗證本假說。暫時性缺血腦中風的大鼠接受ProT或ProTNLS 100g/kg靜脈注射治療。並和對照組比較。以腦壞死的體積,神經功能的損傷程度來評估該蛋白質的神經保護功能。各治療對發炎反應的影響以酵素免疫分析法評估促發炎性細胞激素(TNF-,MPO)及抗發炎細胞激素(IL-10)分泌量,及以組織免疫螢光染色來評估腦組織內微膠細胞(microglia)的活化來評估。也評估該治療對腦源性神經滋養因子(BDNF)的表現的影響。實驗結果發現,雖然ProT及ProTNLS 對缺血性腦中風都有治療效果,但ProTNLS較ProT有較好的保護效果。並且ProT治療將導致TNF-急遽上升,而ProTNLS治療則沒有這樣的現象。ProTNLS治療可以抑制基質金属蛋白酶(MMPs)及內微膠細胞的活化,顯示其有抗發炎效果。移除胸腺前素的入核訊息的確可以降低其促發炎作用並加強其療效。
    本實驗以兩種不一樣的策略來發展缺血性腦中風的治療藥物。也揭示了免疫調節在缺血性腦中風多元治療扮演重要角色。本研究結果有助於後續發展缺血性腦中風治療藥物。

    Multimodal therapy focusing on different targets is an important trend for developing therapy agents of ischemic stroke. Important strategies for multimodal therapy include: (1) Combination of established neuro-protective agents with distinct mechanisms. (2) Structure modification of a protein that is potentially neuroprotective to improve its therapeutic potency and decrease its detrimental effects. In this thesis, we tried to develop new therapies for ischemic stroke targeting on anti-necrosis and immunomodulation.
    Inorganic magnesium ion (Mg2+) has potential to treat ischemic stroke by preventing the release of neurotransmitters and blocking N-methyl-D-asparate (NMDA)-coupled calcium channels, thereby inhibiting calcium entry into the neurons. However, large bolus dosage carries the risk of cardiovascular depression. To decrease the effective therapeutic dose and adverse effects of MgSO4, combination with other drugs targeting on the downstream pathophysiologic events is a reasonable consideration. Anti-inflammatory agents, such as cyclooxygenase-2 inhibitor, are also promising agents for treatment of ischemic stroke. In the first part of this thesis, we tested the synergism of MgSO4 and nimesulide at half their usual dose. The neuro-protective effects of three protocols, MgSO4 alone, nimesulide alone, and a combination of both, were compared. Inflammatory markers, such as cyclooxygenase-2, myeloperoxidase, prostaglandin E2 were examined to evaluate the impact of individual treatment on post-ischemic inflammation. Our results demonstrated that combination treatment group showed a significant decrease in infarction volume and neurological severity score. Low dose MgSO4 or nimesulide showed no significant neuroprotection. There was also significant suppression of cyclooxygenase-2, prostaglandin E2, myeloperoxidase, and caspase-3 expressions in the combination treatment group, suggesting that the combination of the two drugs improved the neuroprotective effects of each individual drug. MgSO4 and nimesulide have synergistic effects on ischemia-reperfusion insults.
    Prothymosin-α (ProT) has shown its neuroprotective effect for ischemic insults by shifting necrotic cell death to apoptosis. However, ProT also has pro-inflammatory activity that may enhance ischemic injury. C-terminal of ProT contains its nuclear localizing signal (NLS) and most potent immunostimulatory signal. We hypothesized that delete NLS from ProT (ProTNLS) can attenuate its pro-inflammatory effect and improve the therapeutic effect on treatment of ischemic stroke. In second part of this thesis, we evaluated the therapeutic effect of ProT and ProTNLS on transient ischemic stroke, with special focus on immunomodulatory effects of ProTNLS on post-ischemic inflammation after transient middle cerebral artery occlusion. Therapeutic outcomes of ProT and ProTNLS on ischemic brain injury were evaluated by morphological and functional outcome evaluations. The impact of treatments on the post-ischemic inflammation was also evaluated. Expression of inflammatory cytokines, Tumor necrosis factor alpha (TNF-α), matrix metallopeptidase (MMPs) 2 and 9, myeloperoxidase (MPO), and interleukin-10 (IL-10) were examined by enzyme-linked immunosorbent assay or gelatin zymography. Immunohistochemistry for antigens indicating activation of microglia, Iba-1 and CD68, were used to evaluate the activation of microglia. Our results showed that while both ProT and ProTΔNLS reduce infarction volume and improve functional outcome, ProTΔNLS provides the best therapeutic outcome. ProT increases TNF-α but decreases IL-10 secretion after ischemic injury, reflecting its pro-inflammatory activity. ProTΔNLS suppresses expression of TNF-α, MPO and activity of MMPs in ischemic brain tissue. It also suppresses activation of microglia in penumbral cortex. These data demonstrated that deletion of NLS from ProT may attenuate post-ischemic inflammation and enhance the neuroprotective effects of ProT.
    Immunomodulation is an important target for treatment of ischemic stroke. In this thesis, we showed immunomodulation can work synergistically with potential neuroprotective agents to decrease effective therapeutic dose, improve therapeutic effects and decrease adverse side effects. Immunomodulation is an important part in multimodal treatments for ischemic stroke

    Table of Contents Chapter 1. Introduction 1 1.1 Pathophysiology of ischemic stroke 1 1.1.1 Mechanisms of necrotic cell death 1 1.1.2 Mechanisms of programmed cell death 3 1.1.3 Post-ischemic inflammation 4 1.2 Current status in treatment of ischemic stroke 5 1.3 Magnesium is a potential neuroprotective agent for ischemic injuries 7 1.4 COX-2 inhibitor is a potential neuroprotective agent for ischemic injuries 8 1.5 Prothymosin-α is a potential neuroprotective agent for ischemic injuries 9 1.6 Thesis aims 11 Aim 1: Studies on treatment of transient ischemic stroke using combined MgSO4 and nimesulide regimen. 12 Aim 2: Studies on treatment of transient ischemic stroke using ProTNLS. 13 Chapter 2. Synergistic effects of magnesium sulfate and nimesulide on treatment of transient ischemic stroke 14 2.1 Background and aims 14 2.2 Materials and methods 15 Animals 15 Middle cerebral artery occlusion 16 Drugs 17 Experimental groups 17 Neurobehavioral testing 17 Infarct volume assessment 18 Evaluation of cerebral edema 19 Western blotting 19 Enzyme linked immunosorbent assay 20 Brain sections preparation 20 Immunohistochemistry 21 Image analysis and cell counting 21 Statistical analysis 22 2.3 Results 23 Changes of LDF signal and body temperature during MCAO and reperfusion 23 Table 2-1. Changes of LDF signal and temperature during MCAO and reperfusion. 23 Effect of combined MgSO4 and nimesulide treatment on infarct volume 24 Effect of MgSO4 and nimesulide treatment on post-ischemia brain edema 24 Figure 2-1. Effect of combined MgSO4 and nimesulide on infarct volume and brain edema 25 Effect of combined MgSO4 and nimesulide treatment on functional outcome 26 Figure 2-2. Effect of combined treatment on functional outcome after tMCAO. 26 Effect of MgSO4 and nimesulide treatments on COX-2 expression in the inner boundary zone of infarction 27 Effects of combined treatment on suppressing COX-2 expression in the brain tissue 27 Figure 2-3. Effect of combined MgSO4 and nimesulide on COX-2 expression 72 hours after ischemia-reperfusion injury. 28 Effect of combined treatment on PGE2 expression after ischemic infarction 29 Figure 2-4. ELISA of PGE2 expression in brain 72 hours after ischemic-reperfusion injury. 30 Effect of combined treatment on MPO expression 30 Figure 2-5. Effect of combined MgSO4 and nimesulide on MPO expression 72 hours after ischemia-reperfusion injury 31 Caspase-3 expression in brain tissue 32 Figure 2-6. Effect of combined MgSO4 and nimesulide on Caspase-3 expression 72 hours after ischemia-reperfusion injury. 33 2.4 Discussions 35 Chapter 3. ProTNLS enhance neuroprotective effect of ProT 40 3.1 Background and aims 40 3.2 Materials and methods 42 Protein preparation 42 Experimental Paradigm 43 Middle cerebral artery occlusion 43 Infarct volume assessment 44 Neuro-behavioral testing 45 Rotarod test 46 Protein assay 46 Gelatin zymography for MMP-2 and MMP-9 47 Brain sections preparation 47 Immunofluorescent stains 48 Image analysis and cell counting 48 Statistical analysis 49 3.3 Results 50 ProTNLS and ProT decrease infarction volume after ischemia/reperfusion injury 50 Figure 3-1. Infarction volume 72 h after ischemia/reperfusion injury evaluated by TTC staining. 50 ProTNLS and ProT improved functional recovery after ischemia/reperfusion injury 51 Figure 3-2. Functional outcome 24 h and 72 h after ischemia/reperfusion injury with different treatment evaluated NSS and rotarod performance 52 ProTNLS attenuate expression of TNF-α induced by ProT but promote secretion of IL-10 53 Figure 3-3. Expression of TNF-α 24 h after ischemia/reperfusion injury with different treatment. 54 Figure 3-4. Impact of ProT treatment on IL-10 expression with different treatment. 54 ProTNLS decreased expression of activated of MMP-2 and MMP-9 72 h after ischemia/reperfusion injury 55 Figure 3-5. Expression of activated MMP-2 and MMP-9 24 and 72 h after ischemia/reperfusion injury with different treatment. 56 ProTNLS suppressed expression of MPO 72 h after ischemia/reperfusion injury 57 Figure. 3-6. Expression of MPO 72 h after ischemia/reperfusion injury with different treatment. 57 ProTNLS can suppress activation of microglia after ischemic/reperfusion injury 58 Figure 3-7. Immunofluorescent stains for activated microglia at 24 h after tMCAO with different treatments. 59 ProTNLS stimulate the expression of BDNF 60 Figure 3-8. Expression of BDNF 72 h after ischemia/reperfusion injury with different treatment. 60 3.4 Discussions 61 Chapter 4. Conclusions and prospect 66 4.1 Experimental results 66 Magnesium sulfate and nimesulide have synergistic effects on rescuing brain damage after temporary focal ischemia 66 Deletion of nuclear localizing signal attenuates pro-inflammatory activity of Prothymosin-alpha and enhances its neuroprotective effect on transient ischemic stroke 66 Thesis conclusions 67 Prospect 68 References: 70

    1. Ducluzeau PH, Fletcher LM, Vidal H, Laville M, Tavare JM (2002) Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes. Diabetes Metab 28 (2), 85−92.
    2. Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97(18), 10236−10241.
    3. Burkhalter J, Fiumelli H, Allaman I, Chatton JY, Martin JL (2003) Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. J Neurosci 23(23), 8212−8220.
    4. Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20(15), 5454−5468.
    5. Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 1988;8:185–196.
    6. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206.
    7. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and DATP dependent formation of APAF-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489.
    8. Lorenzo HK, Susin SA, Penninger J, Kroemer G (1999) Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999;6(6):516–24.
    9. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prévost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14 (5): 729–39.
    10. Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2000) Apoptosis-inducing factor (AIF): A novel caspase-independent death effector released from mitochondria. Biochimie 84(2-3):215–22.
    11. Krupinski J, Lo´pez E, Martı´ E, Ferrer I (2000) Expression of caspases and their substrates in the rat model of focal cerebral ischaemia. Neurobiol Dis 7(4):332–42.
    12. Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M, Chan P (1998) Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 18(11):1239–47.
    13. Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C, Graham SH, Chen J (2001) Intracellular Bax translocation after transient cerebral ischemia: Implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 21(4):321–33.
    14. Wang Q, Tang XN, Yenari, MA (2007) The inflammatory response in stroke. J Neuroimmunol 184 (1-2): 53–68.
    15. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276(1): 13–26.
    16. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukocyte Biology 87(5): 779–789.
    17. Sughrue ME, Mehra A, Connolly ES Jr, D’Ambrosio AL (2004) Anti-adhesion molecule strategies as potential neuroprotective agents in cerebral ischemia: a critical review of the literature. Inflamm Res 53(10):497–508.
    18. Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 25(5):593–606.
    19. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10):734–744.
    20. Murakami Y, Saito K, Hara A, Zhu Y, Sudo K, Niwa M, Fujii H, Wada H, Ishiguro H, Mori H, Seishima M (2005) Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. J Neurochem 93(6):1616–1622.
    21. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26(5):654–665.
    22. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, Dantzer R, Kelley KW (2001) Interleukin-10 in the brain. Crit Rev Immunol 21(5):427–449.
    23. Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J. (2014) The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci 124(10):707-716.
    24. Park KP, Rosell A, Foerch C, Xing C, Kim WJ, Lee S, Opdenakker G, Furie KL, Lo EH (2009) Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke 40(8):2836–2842.
    25. Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238(1-2):53–56.
    26. Gesuete R, Storini C, Fantin A, Stravalaci M, Zanier ER, Orsini F, Vietsch H, Mannesse ML, Ziere B, Gobbi M, De Simoni MG (2009) Recombinant C1 inhibitor in brain ischemic injury. Ann Neurol 66(3), 332–342.
    27. Iadecola C, Zhang F, Xu X (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 268 (1 Pt 2) , R286–R292.
    28. Prestigiacomo CJ, Kim SC, Connolly ES Jr, Liao H, Yan SF, Pinsky DJ(1999) CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke 30(5), 1110–1117.
    29. Stowe AM, Adair-Kirk TL, Gonzales ER, Perez RS, Shah AR, Park TS, Gidday JM (2009) Neutrophil elastase and neurovascular injury following focal stroke and reperfusion. Neurobiol Dis 35(1), 82–90.
    30. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131 (Pt 3), 616–629.
    31. Furuya K, Takeda H, Azhar S, McCarron RM, Chen Y, Ruetzler CA, Wolcott KM, DeGraba TJ, Rothlein R, Hugli TE, del Zoppo GJ, Hallenbeck JM (2001) Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke 32(1), 2665–2674.
    32. Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, Hall CE, Switzer JA, Ergul A, Hess DC (2010) Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41(10), 2283–2287.
    33. Lin JY, Chung SY, Lin MC, and Cheng FC (2002) Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe micro-dialysis technique. Life Sci 71 (7), 803-811.
    34. Kass IS, Cottrell JE, and Chambers G (1988) Magnesium and cobalt, not nimodipine, protect neurons against anoxic damages in the rat hippocampal slice. Anesthesiology 69(5), 710-715.
    35. Greensmith L, Mooney EC, Waters HJ, Houlihan-Burne DG, and Lowrie MB (1995) Magnesium ions reduce motoneuron death following nerve injury or exposure to N-methyl-D-aspartate in the developing rat. Neuroscience 68(3), 807-812.
    36. Izumi Y, Roussel S, Pinadr E, and Seylaz J (1991) Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 11(6), 1025-1030.
    37. Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, and Harbaugh RE (1996) Neuro-protective effects of pre-ischemia intra-arterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg 85(1), 117-124.
    38. Meloni BP, Zhu H, and Knuckey NW (2006) Is magnesium neuro-protective following global and focal cerebral ischemia? A review of published studies. Magnes Res 19(2), 123-137.
    39. Barone FC, and ad Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19(8), 819-834.
    40. Katsuki H, and Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46(6), 607-636.
    41. Ferreira SH (1972) Prostaglandins, aspirin-like drugs and analgesia. Nature New Biol 240(102), 200-203.
    42. Candelario-Jalil E, Fiebich BL (2008) Cyclooxygenase inhibitionin ischemic brain injury. Curr Pharm Des 14(14), 1401–1418.
    43. Rainsford KD (2006) Current status of the therapeutic uses and actions of the preferential cyclo-oxygenase-2 NSAID, nimesulide. Inflammopharmacology. 14 (3-4), 120-137.
    44. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL (2004) Wide therapeutic time window for nimesulide neuro-protection in a model of transient focal cerebral ischemia in the rat. Brain Res 1007(1-2):98-108.
    45. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL (2007) Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 100(4):1108-1120.
    46. Singla AK, Chawla M, and Singh A (2000) Nimesulide: some pharmaceutical and pharmacological aspects and update. J Pharm Pharmacol 52(2), 467-486.
    47. Haritos AA, Goodall GJ, Horecker BL (1984) Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci USA 81(4): 1008–1011.
    48. Baxevanis CN, Reclos GJ, Panneerselvam C, Papamichail M (1988) Enhancement of human T lymphocyte functions by prothymosin alpha. I. Augmentation of mixed lymphocyte culture reactions and soluble protein-induced proliferative responses. Immunopharmacology 15(2): 73–84.
    49. Baxevanis, CN, Thanos D, Reclos GJ, Anastasopoulos E, Tsokos GC, Papamatheakis J, Papamichail M (1992) Prothymosin alpha enhances human and murine MHC class II surface antigen expression and messenger RNA accumulation. J Immunol 148(7): 1979–1984.
    50. Skopeliti M, Voutsas IF, Klimentzou P, Tsiatas ML, Beck A, Bamias A, Moraki M, Livaniou E, Neagu M, Voelter W, Tsitsilonis OE (2006) The immunologically active site of prothymosin alpha is located at the carboxy-terminus of the polypeptide. Evaluation of its in vitro effects in cancer patients. Cancer Immunol Immunother 55(10): 1247–1257.
    51. Mosoian A (2011) Intracellular and extracellular cytokine-like functions of prothymosin α: implications for the development of immunotherapies. Future Med Chem 3(9):1199-1208.
    52. Manrow RE, Sburlati AR, Hanover JA, Berger SL (1991) Nuclear targeting of prothymosin. J Biol Chem 266(6): 3916–3924.
    53. Skopeliti M, Iconomidou VA, Derhovanessian E, Pawelec G, Voelter W, Kalbacher H, Hamodrakas SJ, Tsitsilonis OE (2009) Prothymosin α immunoactive carboxyl-terminal peptide TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell maturation and adopts a β-sheet conformation in a sequence-specific manner. Mol Immunol 46(5): 784-792.
    54. Ueda H (2009) Prothymosin α and cell death mode switch, a novel target for the prevention of cerebral ischemia-induced damage. Pharmacology &Therapeutics 123(3): 323-333.
    55. Ueda H, Fujita R (2007) Prothymosin-α1 prevents necrosis and apoptosis following stroke. Cell death and differentiation 14(10): 1839-1842.
    56. Warrington SJ, Ravic M, Dawnay A (1993). Renal and general tolerability of repeated doses of nimesulide in normal subjects. Drugs. 46 (Suppl 1):263-269.
    57. Longa EZ, Weinstein PR, Carlson S, Cummings R. (1989) Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke 20(1): 84-91.
    58. Zhang Z, Chen TY, Kirsch JR, Toung TJK, Traystman RJ, Koehler RC, Hurn PD, Bhardwaj A (2003) Kappa-opioid receptor selectivity for ischemic neuro-eprotection with BRL 52537 in rats. Anesth Analg 97, 1776-1783.
    59. Clark, WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F (2000) Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 31(7), 1715-1720.
    60. Lin TN, He YY, Wu G, Khan M, and Hsu CY (1993). Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24(1):117-121.
    61. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10(2):290-293.
    62. Hatashita, S., Hoff, J.T., and Salamat, S.M. (1998) Ischemic brain edema and the osmotic gradient between blood and brain. J. Cereb. Blood Flow Metab. 8(4), 552-559.
    63. Tsai KJ, Yang CH, Fang YH, Cho KH, Chien WL, Wang WT, Wu TW, Lin CP, Fu WM, Shen CK (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207(8), 1661-1673.
    64. Kinoshita Y, Ueyama T, Senba E, Terada T, Nakai K, and Itakura T (2001) Expression of c-fos, heat shock protein 70, neurotrophins, and cyclooxygenase-2 mRNA in response to focal cerebral ischemia/reperfusion in rats and their modification by magnesium sulfate. J Neurotrauma 18(4), 435-445.
    65. Li F, Omae T, and Fisher M (1999) Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke 30(11), 2464-2471.
    66. Fuchs-Buder T, Tramer MR, and Tassonyi E (1997) Cerebrospinal fluid passage of intravenous magnesium sulfate in neurosurgical patients. J Neurosurg Anesthesiol 9(4), 324-328.
    67. Thurnau GR, Kemp DB, and Jarvis A (1987) Cerebrospinal fluid levels of magnesium in patients with pre-eclampsia after treatment with intravenous magnesium sulfate: a preliminary report. Am J Obstet Gynecol 157(6), 1435-1438.
    68. Wakita H, Tomimoto H, Akiguchi I, Lin JX, Miyamoto K, and Oka N (1999) A cyclooxygenase-2 inhibitor attenuates white matter damage in chronic cerebral ischemia. Neuroreport 10(7),1461-1465.
    69. Miettinen S, Fusco FR, Yrjanheikki J, Keinanen R, Hirvonen T, Roivainen R, Närhi M, Hökfelt T, and Koistinaho J (1997) Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D–aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci USA 94(12), 6500-6505.
    70. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11(2), 371-86.
    71. Minghetti L, Polazzi E, Nicolini A, Cre´minon C, Levi G (1997) Up-regulation of cyclooxygenase-2 expression in cultured microglia by prostaglandin E2 , cyclic AMP, and non-steroidal anti-inflammatory drugs. Eur J Neurosci 9(5), 934-940.
    72. Faour WH, He Y, He QW, de Ladurantaye M, Quintero M, Mancini A, and Battista JAD (2001) Prostaglandin E2 regulates the level and stability of cyclooxygenase-2 mRNA through activation of p38 mitogen-activated protein kinase in interleukin-1 beta-treated human synovial fibroblasts. J Biol Chem 276(34), 31720-31731.
    73. Murakami M, Kuwata H, Amakasu Y, Shimbara S, Nakatani Y, Atsumi G, and Kudo I (1997) Prostaglandin E2 amplifies cytosolic phospholipase A2 and Cyclooxygenase-2-dependent delay prostaglandin E2 generation in mouse ostroblastic cells. J Biol Chem 272(32), 19891-19897.
    74. FitzGerald GA (2003) COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2(11), 879-890.
    75. Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, Ross E, and Iadecola C (2004) Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol 55(5), 668-675.
    76. Chamorro A, and Hallenbeck J (2006) The harms and benefits of inflammatory and immune responses in vascular disease. Stroke 37(2), 291-293.
    77. Hartl R, Schurer L, Schmid-Schonbein GW, and del Zoppo GJ (1996) Experimental anti-leukocyte interventions in cerebral ischemia. J Cereb Blood Flow Metab 16(6), 1108-1119.
    78. Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E, Qiu S, Moskowitz MA, and Weissleder R (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci USA 105(47), 18584-18589.
    79. Takadera T, Ohyashiki T (2006) Prostaglandin E2 deteriorates N-methyl-D-aspartate receptor-mediated cytotoxicity possibly by activating EP2 receptors in cultured cortical neurons. Life Sci 78(16), 1878-1883.
    80. Takadera T, Yumoto H, Tozuka Y, and Ohyashiki T (2002) Prostaglandin E2 induces caspase-dependent apoptosis in rat cortical cells. Neurosci Lett 317(2), 61-64.
    81. Lo, E.H. (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14, 497-500.
    82. Shiau AL, Chen SY, Chang MY, Su CH, Chung SY, Yo YT, Wang CR, Wu CL. (2007) Prothymosin alpha lacking the nuclear localization signal as an effective gene therapeutic strategy in collagen-induced arthritis. J Immunol 178(7): 4688−4694.
    83. Shiau AL, Lin P R, Chang MY, Wu CL (2001) Retrovirus-mediated transfer of prothymosin gene inhibits tumor growth and prolongs survival in murine bladder cancer. Gene Ther 8(21): 1609–1617.
    84. Wang LC, Huang CY, Wang HK, Wu MH, & Tsai KJ (2012) Magnesium Sulfate and Nimesulide Have Synergistic Effects on Rescuing Brain Damage after Transient Focal Ischemia. J Neurotrauma 29(7): 1518–1529.
    85. Huang CY, Wang LC, Wang HK, Pan CH, Cheng YY, Shan YS, Chio CC, Tsai KJ (2015) Memantine alleviates brain injury and neurobehavioral deficits after experimental subarachnoid hemorrhage. Mol Neurobiol 51(3): 1038-1053.
    86. Buttini M, Appel K, Sauter A, Gebicke-Haerter P-J, Boddeke HWGM (1996) Expression of tumor necrosis factor alpha after focal cerebral ischemia in the rat. Neuroscience 71(1):1–16.
    87. Wang YC, Lin S, & Yang QW (2011). Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation 8(134), 554-561.
    88. Halder SK, Matsunaga H1 Ishii KJ, Ueda H (2015). Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina. J Neurochem 135(6):1161-77.
    89. Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8(12):1363–1368.
    90. Haddad M, Rhinn H, Bloquel C, Coqueran B, Szabo C, Plotkine M, Scherman D, Margaill I (2006) Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice.Br J Pharmacol 149(1):23–30.
    91. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17(5):483–490.
    92. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, Ongini E (2000) Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 12(7):2265–2272.
    93. Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, Arakawa S, Sugimori H, Kamouchi M, Kitazono T, Iida M (2005) Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111(7):913–919.
    94. Wjhre T, Halvorsen B, Damås JK, Yndestad A, Brosstad F, Gullestad L, Kjekshus J, Frøland SS, Aukrust P (2002) Inflammatory imbalance between IL-10 and TNF-α in unstable angina potential plaque stabilizing effects of IL-10. Eur J Clin Invest 32(11):803–810.
    95. Silvestre JB, Mallat Z, Tamarat R, Duriez M, Tedgui A, and Levy BI (2001) Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10. Role in ischaemia-induced angiogenesis. Circ Res 89(3): 259–264.
    96. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16(10):851-863.
    97. Issazaseh S, Lorentzen JC, Mustafa MI, HOjeberg B, Miissener A, Olsson T (1996) Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin- 10 and transforming growth factor-β. J Neuroimmunol 69(1-2):103-115.
    98. Londono D, Carvajal J, Strle K, Kim KS, Cadavid D (2011) IL-10 Prevents apoptosis of brain endothelium during bacteremia. J immunol 186(12):7176–7186.
    99. Levy Y, Brouet JC (1994) Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the BCL-2 protein. J Clin Invest 93(1): 424-428.
    100. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinases-9 reduces infarct size. Stroke 29(5):1020 –1030.
    101. Opdenakker G, Van den Steen PE, Van Damme J (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 22(10):571–579.
    102. Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3(2-3):69-75.
    103. Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, and Gearing A (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893(1-2): 104–112.
    104. Jiang X, Namura S, Nagata I (2001) Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice. Neurosci Lett 305(1):41-44.
    105. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25(27):6401-8.
    106. Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, Allan SM (2007) Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab 27(12): 1941–1953.
    107. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, and Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183(1): 25–33.
    108. Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF (2009) Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 12(7):872–878.
    109. Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6(1):e15973.
    110. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980.
    111. Patel, A. R., Ritzel, R., McCullough, L. D., & Liu, F. (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5(2):73–90.
    112. Mosher KI, Andres RH, Fukuhara T, Bieri G, Hasegawa-Moriyama M, He Y, Guzman R, Wyss-Coray T (2012) Neural progenitor cells regulate microglia functions and activity. Nat Neurosci 15(11):1485–1487.
    113. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32(5):1208-1215.

    下載圖示 校內:2021-06-30公開
    校外:2021-06-30公開
    QR CODE