| 研究生: |
陳政德 Chen, Cheng-Te |
|---|---|
| 論文名稱: |
B-spline有限元素法於二維平面應力問題收斂性探討 The study of the convergence rate on B-spline finite element method in two dimensional plane stress problems |
| 指導教授: |
何旭彬
Ho, Shi-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 收斂性 、條件數 、B-spline有限元素法 、細切 |
| 外文關鍵詞: | convergence rate, refinement, condition number, B-spline finite element method |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用B-spline函數為基底函數,解二維不規則形狀的平面應力問題。本文同時使用二至六階的B-spline函數並改變元素大小,針對不同的不規則形狀做詳細的探討。
首先對正方形平板挖圓孔的不規則形狀作研究,發現幾何模擬誤差對高階B-spline函數的收斂性影響很大。藉由降低幾何模擬誤差,當元素逐漸縮小時,可顯現三階以上B-spline函數相當佳的h收斂性,而當元素大小不變,增加B-spline函數階數時,則可顯現相當佳的p收斂性。
為了使B-spline有限元素法能更廣泛應用到其他幾何形狀,因此本論文也研究正方形平板挖多圓孔、橢圓孔及圓角矩形孔的應力問題。對於細小積分面積而引起的勁度矩陣條件數變大的影響,本論文也有所探討,大條件數對正方形平板挖圓孔問題的應力誤差約為0.001%,而對正方形平板挖橢圓孔的應力誤差約為0.1%~0.3%。經由正方形平板挖圓角矩形孔的研究,發現高階B-spline函數為了維持Ck-1連續性,在最大應力點附近區域準確度不如二階有限元素法的結果,但最大應力點的準確度比二階有限元素法佳。
本文提出細切方法,此方法在應力集中的區域可任意增加小元素B-spline函數,可用較少的自由度得到更準確的分析,提升B-spline有限元素法的效率。
綜合以上各分析,本研究顯示B-spline有限元素法可以廣泛應用在二維不規則形狀平面應力問題。
We used the B-spline functions as the basis functions to solve the two dimensional plane stress problems with irregular shapes. We used B-spline functions from second order to sixth order simultaneously and different element size on the problems with different irregular shapes.
The first irregular shape in these studies is a square plate with a circular hole. The geometry simulation error has a great effect upon the convergence rate of high order B-spline functions. By decreasing the simulation error of geometry, the h convergence of high order B-spline functions is excellent when the element size decreases, and the p convergence is also excellent when increases the order of B-spline functions in the same element size.
In order to use the B-spline finite element method widely on other irregular shapes, we also study stress problems on a square plate with multiple circular holes, a elliptic hole and a rectangle hole with round edges. We also study the effect of the stiffness matrix with a large condition number, which is caused by small integration area. The stress error induced by large condition number on a square plate with a circular hole is about 0.001%, and the stress error on a square plate with a elliptic hole is about 0.1%~0.3%. According to the study of a rectangle hole with round edges in a square plate, for maintaining the property of Ck-1 continuity, the accuracy of the high order B-spline functions on areas around the maximum stress point is not as good as the results of the second-order finite element method, but the accuracy of maximum stress point is better than the results of the second-order finite element method.
We proposed a method of refinement. With this method, we can add small B-spline functions on small elements at will, and we can use lesser degree of freedom to get a more accurate result in the analysis. The uses of refinement will increase the efficiency of the B-spline finite element method.
In summary, the studies in this thesis show that the B-spline finite element method can be used widely in the analysis on the two dimensional plane stress problems with irregular shapes.
[1] Aggarwal, B., “B-spline finite elements for plane elasticity problems”,
Texas A&M university, 2006.
[2] Clough, R.W., “The finite element method in plane stress analysis”,
Proceedings of 2nd conference on electronic computation. Pittsburgh:
American society of civil engineers, 345-378, 1960.
[3] Dag, I., “A quadratic B-spline finite element method for solving
nonlinear Schrödinger equation”, Computer methods in applied
mechanics and engineering, Vol. 174, 247-258, 1999.
[4] Gardner, L. R. T., & Gardner, G. A., “A two dimensional bi-cubic
B-spline finite element: used in a study of MHD-duct flow”,
Computer methods in applied mechanics and engineering, Vol. 124,
365-375, 1995.
[5] Hrennikoff, A., “Solution of problems in elasticity by the frame work
method”, ASME journal of applied mechanics, Vol. 8, 169-175,
1941.
[6] Höllig, K., Finite element methods with B-splines, Society for
industrial and applied mathematics, Philadelphia, 2003.
[7] Kutluay, S., & Esen, A., “A B-spline finite element method for the
thermistor problem with the modified electrical conductivity”,
Applied mathematics and computation, Vol. 156, 621-632, 2004.
[8] Liang, X., Jian, B., & Ni, G., “The B-spline finite element method in
electromagnetic field numerical analysis”, IEEE transactions on
magnetics, Vol. 23, 2641-2643, 1987.
[9] Leung, A. Y. T., & Au, F. T. K., “Spline finite elements for beam and
77
plate”, Computers & structures, Vol. 5, 717-729, 1990.
[10] Mortenson, M. E., Geometric modeling, Wiley computer publishing,
New York, 113-142, 1997.
[11] Ni, G., Xu, X., & Jian, B., “B-spline finite element method for eddy
current field analysis”, IEEE transactions on magnetics, Vol. 26,
723 - 726, 1990.
[12] Özis, T., Esen, A., & Kutluay, S., “Numerical solution of Burgers’
equation by quadratic B-spline finite elements”, Applied
mathematics and computation, Vol. 165, 237-249, 2005.
[13] Pöschl, W., “B-spline finite elements and their efficiency in solving
relativistic mean field equations”, Computer physics
communications, Vol. 112, 42-66, 1998.
[14] Reddy, J. N., An introduction to the finite element method,
McGraw-Hill, Texas, 2006.
[15] Schoenberg, I. J., “Contributions to the problem of approximation of
equidistant data by analytic functions”, Quarterly of applied
mathematics, Vol. 4, 45-99、112-141, 1946.
[16] Shen, P., & He, P., “Bending analysis of rectangular moderately
thick plates using spline finite element method”, Computers &
structures, Vol. 54, 1023-1029, 1995.
[17] Van Erp, G. M., Yuen, S. W., & Swannell, P., “A new type of
B3-spline interpolation”, Communications in numerical methods in
engineering, Vol. 10, 1013-1020, 1994.
[18] 張家源, “B-spline 有限元素法解三維彈性力學問題”, 國立成功
大學機械工程研究所碩士論文, 2008.
78
[19] 廖宏哲, “二維B-spline 有限元素法不規則邊界形狀處理及於平
板上的應用”, 國立成功大學機械工程研究所碩士論文, 2007.
[20] 趙啟翔,“B-spline有限元素法於二維平面應力問題之研究”, 國立
成功大學機械工程研究所碩士論文, 2007.