簡易檢索 / 詳目顯示

研究生: 陳政德
Chen, Cheng-Te
論文名稱: B-spline有限元素法於二維平面應力問題收斂性探討
The study of the convergence rate on B-spline finite element method in two dimensional plane stress problems
指導教授: 何旭彬
Ho, Shi-Pin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 收斂性條件數B-spline有限元素法細切
外文關鍵詞: convergence rate, refinement, condition number, B-spline finite element method
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用B-spline函數為基底函數,解二維不規則形狀的平面應力問題。本文同時使用二至六階的B-spline函數並改變元素大小,針對不同的不規則形狀做詳細的探討。
    首先對正方形平板挖圓孔的不規則形狀作研究,發現幾何模擬誤差對高階B-spline函數的收斂性影響很大。藉由降低幾何模擬誤差,當元素逐漸縮小時,可顯現三階以上B-spline函數相當佳的h收斂性,而當元素大小不變,增加B-spline函數階數時,則可顯現相當佳的p收斂性。
    為了使B-spline有限元素法能更廣泛應用到其他幾何形狀,因此本論文也研究正方形平板挖多圓孔、橢圓孔及圓角矩形孔的應力問題。對於細小積分面積而引起的勁度矩陣條件數變大的影響,本論文也有所探討,大條件數對正方形平板挖圓孔問題的應力誤差約為0.001%,而對正方形平板挖橢圓孔的應力誤差約為0.1%~0.3%。經由正方形平板挖圓角矩形孔的研究,發現高階B-spline函數為了維持Ck-1連續性,在最大應力點附近區域準確度不如二階有限元素法的結果,但最大應力點的準確度比二階有限元素法佳。
    本文提出細切方法,此方法在應力集中的區域可任意增加小元素B-spline函數,可用較少的自由度得到更準確的分析,提升B-spline有限元素法的效率。
    綜合以上各分析,本研究顯示B-spline有限元素法可以廣泛應用在二維不規則形狀平面應力問題。

    We used the B-spline functions as the basis functions to solve the two dimensional plane stress problems with irregular shapes. We used B-spline functions from second order to sixth order simultaneously and different element size on the problems with different irregular shapes.
    The first irregular shape in these studies is a square plate with a circular hole. The geometry simulation error has a great effect upon the convergence rate of high order B-spline functions. By decreasing the simulation error of geometry, the h convergence of high order B-spline functions is excellent when the element size decreases, and the p convergence is also excellent when increases the order of B-spline functions in the same element size.
    In order to use the B-spline finite element method widely on other irregular shapes, we also study stress problems on a square plate with multiple circular holes, a elliptic hole and a rectangle hole with round edges. We also study the effect of the stiffness matrix with a large condition number, which is caused by small integration area. The stress error induced by large condition number on a square plate with a circular hole is about 0.001%, and the stress error on a square plate with a elliptic hole is about 0.1%~0.3%. According to the study of a rectangle hole with round edges in a square plate, for maintaining the property of Ck-1 continuity, the accuracy of the high order B-spline functions on areas around the maximum stress point is not as good as the results of the second-order finite element method, but the accuracy of maximum stress point is better than the results of the second-order finite element method.
    We proposed a method of refinement. With this method, we can add small B-spline functions on small elements at will, and we can use lesser degree of freedom to get a more accurate result in the analysis. The uses of refinement will increase the efficiency of the B-spline finite element method.
    In summary, the studies in this thesis show that the B-spline finite element method can be used widely in the analysis on the two dimensional plane stress problems with irregular shapes.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 X 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 5 1.4 論文架構 6 第二章 平面應力理論及B-spline曲線介紹 8 2.1 平面應力理論 8 2.2 B-spline曲線介紹 11 2.2.1 非均勻B-spline曲線 11 2.2.2 均勻B-spline曲線 15 第三章 二維B-spline有限元素法 17 3.1 二維B-spline有限元素法的介紹 17 3.1.1 基底函數 17 3.1.2 網格 20 3.1.3 元素的積分 21 3.1.4 自由度的個數 25 3.1.5 邊界條件 26 3.2 細切 26 第四章 二維B-spline有限元素法之實例 33 4.1 二維不規則形狀平面應力問題 33 4.1.1 圓孔之不規則模型 34 4.1.2 多圓孔之不規則模型 40 4.1.3 橢圓孔之不規則模型 46 4.1.4 圓角矩形孔之不規則模型一 50 4.1.5 圓角矩形孔之不規則模型二 55 4.1.6 圓角矩形孔之不規則模型三 59 4.2 二維平面應力問題收斂性探討 62 4.2.1 條件數對收斂性的影響 62 4.2.2 幾何誤差對收斂性的影響 66 4.2.3 高階B-spline函數特性對收斂性的影響 69 4.3 細切於二維不規則形狀平面應力問題之應用 70 第五章 結果與討論 74 參考文獻 76 自述 79

    [1] Aggarwal, B., “B-spline finite elements for plane elasticity problems”,
    Texas A&M university, 2006.
    [2] Clough, R.W., “The finite element method in plane stress analysis”,
    Proceedings of 2nd conference on electronic computation. Pittsburgh:
    American society of civil engineers, 345-378, 1960.
    [3] Dag, I., “A quadratic B-spline finite element method for solving
    nonlinear Schrödinger equation”, Computer methods in applied
    mechanics and engineering, Vol. 174, 247-258, 1999.
    [4] Gardner, L. R. T., & Gardner, G. A., “A two dimensional bi-cubic
    B-spline finite element: used in a study of MHD-duct flow”,
    Computer methods in applied mechanics and engineering, Vol. 124,
    365-375, 1995.
    [5] Hrennikoff, A., “Solution of problems in elasticity by the frame work
    method”, ASME journal of applied mechanics, Vol. 8, 169-175,
    1941.
    [6] Höllig, K., Finite element methods with B-splines, Society for
    industrial and applied mathematics, Philadelphia, 2003.
    [7] Kutluay, S., & Esen, A., “A B-spline finite element method for the
    thermistor problem with the modified electrical conductivity”,
    Applied mathematics and computation, Vol. 156, 621-632, 2004.
    [8] Liang, X., Jian, B., & Ni, G., “The B-spline finite element method in
    electromagnetic field numerical analysis”, IEEE transactions on
    magnetics, Vol. 23, 2641-2643, 1987.
    [9] Leung, A. Y. T., & Au, F. T. K., “Spline finite elements for beam and
    77
    plate”, Computers & structures, Vol. 5, 717-729, 1990.
    [10] Mortenson, M. E., Geometric modeling, Wiley computer publishing,
    New York, 113-142, 1997.
    [11] Ni, G., Xu, X., & Jian, B., “B-spline finite element method for eddy
    current field analysis”, IEEE transactions on magnetics, Vol. 26,
    723 - 726, 1990.
    [12] Özis, T., Esen, A., & Kutluay, S., “Numerical solution of Burgers’
    equation by quadratic B-spline finite elements”, Applied
    mathematics and computation, Vol. 165, 237-249, 2005.
    [13] Pöschl, W., “B-spline finite elements and their efficiency in solving
    relativistic mean field equations”, Computer physics
    communications, Vol. 112, 42-66, 1998.
    [14] Reddy, J. N., An introduction to the finite element method,
    McGraw-Hill, Texas, 2006.
    [15] Schoenberg, I. J., “Contributions to the problem of approximation of
    equidistant data by analytic functions”, Quarterly of applied
    mathematics, Vol. 4, 45-99、112-141, 1946.
    [16] Shen, P., & He, P., “Bending analysis of rectangular moderately
    thick plates using spline finite element method”, Computers &
    structures, Vol. 54, 1023-1029, 1995.
    [17] Van Erp, G. M., Yuen, S. W., & Swannell, P., “A new type of
    B3-spline interpolation”, Communications in numerical methods in
    engineering, Vol. 10, 1013-1020, 1994.
    [18] 張家源, “B-spline 有限元素法解三維彈性力學問題”, 國立成功
    大學機械工程研究所碩士論文, 2008.
    78
    [19] 廖宏哲, “二維B-spline 有限元素法不規則邊界形狀處理及於平
    板上的應用”, 國立成功大學機械工程研究所碩士論文, 2007.
    [20] 趙啟翔,“B-spline有限元素法於二維平面應力問題之研究”, 國立
    成功大學機械工程研究所碩士論文, 2007.

    下載圖示 校內:立即公開
    校外:2008-06-27公開
    QR CODE