| 研究生: |
游家旺 Yu, Chia-Wang |
|---|---|
| 論文名稱: |
帷幕牆式太陽能熱水系統熱傳性能之研究 A Study of the Thermal Performance of Curtain Wall Solar Water Heating System |
| 指導教授: |
曾俊達
Tzeng, Chun-Ta |
| 共同指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 帷幕牆 、太陽能熱水器 、熱虹管 、再生能源 |
| 外文關鍵詞: | Curtain wall, Solar water heater, Thermosiphon, Renewable energy |
| 相關次數: | 點閱:149 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在能源短缺以及環保意識上升的影響下,過去幾年中,為了滿足世界不斷增長的能源需求,再生能源已經受到越來越多的關注。透過高效的能源消耗或節能方法實現節能,消耗較少的能源,卻可實現相等的結果或降低能源供應的消耗。介於這些目的,來自自然資源(如陽光、風、潮汐和地熱)的可再生能源對於能源技術研究人員來說是非常重要的。
極端冷、熱氣候的狀態也會隨著都市化程度的上升而更為顯著,此意味著,未來台灣的建築介面構造更需要具備能夠緩衝此兩種截然不同氣候衝擊的能力;再者,在開放式建築(Open Building)設計理念的實踐階段,使其可見立面應具備相當的環控性能,可看出研製高綠能建築立面構造是有其研發之潛力。
全球氣候的變遷會直接影響人們的生活品質,然而台灣建築物在設計與結構方面,預有效減緩氣候變遷對人類的衝擊。將矩型迴路式熱虹管與建築金屬帷幕牆板結合,以直立式鋁板模擬建築外牆,並經歷各階段性太陽熱得狀態,以加熱片模擬太陽熱能,研究透過實驗設備模擬在不同的冷卻型態作用下,觀察以不同冷卻型態對於帷幕牆式太陽能熱水系統之熱傳行為。
實驗結果得知,冷卻水溫度10 度狀態下,冷卻端熱通量與工作流體熱通量皆為最高的熱通量值,推斷冷卻水溫度的降低,可提升其系統之熱傳效果;因冷卻端長度所造成的冷端位差對整體熱傳性能有較大的影響,進而造成管內工作流體之平均流速增加,因而提升整體系統之熱傳效率,導致其熱傳效果為30 公分冷卻水套管優於45公分冷卻水套管。
Under the influence of energy shortage and rising environmental awareness, renewable energy has received more and more attention. Because solar energy has the characteristics of no pollution, independence, and inexhaustible use. Therefore, it has become one of the widely used renewable energy sources, especially Taiwan across the Tropic of Cancer, which is a subtropical region with sufficient solar radiation, which is quite suitable for the development of solar energy applications.
Study the experimental investigations on the thermal performance of rectangular thermosyphon loops. Incorporate a thermosiphon system into the building's curtain wall. Utilizing the characteristics of high reliability of thermosyphon heat exchange. Recycle the heat collected by the sun's rays on the exterior wall. Use a silicone rubber heating plate to simulate solar thermal energy collected on the exterior wall. The proper arrangement of the heating and cooling sections causes changes in the fluid density in the circuit. The generated thermal buoyancy is used to drive the working fluid to transfer thermal energy. The use of cooling tubes of different lengths, combined with cooling water at different temperatures, forms a variety of cooling type combinations.
中文論文【CS】
【CS01】黃家陞,矩型單相熱虹迴路之熱傳特性實驗研究,南台科技大學碩論,2011。
【CS02】紀志旻,帷幕牆不同構法間界面整合之研究-以單元式構法為主體探討之,成功大學碩論,2003。
【CS03】陳榮展,以系統動態觀點建構國軍太陽能熱水器效益評估模 式—以某營區為例,國防大學管理學院資源管理及決策研究所碩士論文,2013。
【CS04】賴玫儒,影響高雄市民安裝太陽能熱水器之因素探討,國立中山大學公共事務管理研究所碩士論文,2014。
【CS05】邱宏達,台灣地區單元式帷幕牆施工精度控制之研究,成功大學碩論,1996。
西文文獻【EB】
【EB01】C.S. Huang, Chia-Wang Yu, R.H. Chen, Chun-Ta Tzeng, Chi-Ming Lai, Experimental observation of natural convection heat transfer performance of a rectangular thermosyphon, Energies, Vol 12, No 9, 2019.
【EB02】Chia-Wang Yu, C.S. Huang, Chun-Ta Tzeng, Lai, Chi-Ming Lai, Effects of the aspect ratio of a rectangular thermosyphon on its thermal performance, Energies, Vol 12, No 20, 2019.
【EB03】Gay, F. W., Heat transfer means, U.S. Patent 1, 725, 906, 1929.
【EB04】Peterson, G. P., An Introduction to Heat Pipes, John Wiley & Sons, Inc, 1994.
【EB05】Japilse, D. Advances in Thermosyphon Technology, Advances in Heat Transfer, edited by T. F. Irvine, Jr. and J. P. Hartnett, Vol. 9, Academic Press, New York, pp.1-111, 1973.
【EB06】M. G. Parent, TH. H. VAN DER MEER, K. G. T. Hollands. Natural convection heat exchangers in solar water heating systems: Theory and experiment. Solar Energy, Vol 45, No 1, pp43-52, 1990.
【EB07】D.J. Close, The performance of solar water heaters with natural circulation, Solar Energy, Vol 6, No 1, pp. 33-38, 1962.
【EB08】B.J. Huang, Zelaya R., Heat Transfer Behavior of a Rectangular Thermosyphon Loop, J. Heat Transfer, Vol. 110, pp. 487-493, 1988.
【EB09】Goh WQ, Ong KS, Tshai KH and Chin WM, Preliminary Experimental Performance of aLoop Thermosyphon, Recent Advances in Petrochemical Science, Vol.5, No.5,2018.
【EB10】Chun W., Ko Y.J., Lee H.J., Han H., Kim J.T., Chen K. “Effects of working fluids on the performance of a bi-directional thermodiode for solar energy utilization in buildings”, Sol. Energy, 83(3), pp. 409-419, 2008.
【EB11】Chen, K. et al. “The dynamic behavior of a bayonet-type thermaldiode”, Sol. Energy 64 (4-6), pp. 257-263, 1998.
【EB12】Chen, K., Chun, W., “Thermosyphons and thermodiodes for solar energy utilization”, In: Hough, T.P. (Ed.), Solar Energy: New Research. Nova Science Publishers Inc., New York, NY, pp. 199-238, 2006.
【EB13】Chen, K., “On the oscillatory instability of closed-loop thermosyphons”, ASME J. Heat Transfer 107 (4), pp. 826-832, 1985.
【EB14】Huang, B.J., Hsieh, C.T., “A simulation method for a solar thermosyphon collector”, Sol. Energy 35, pp. 31-43, 1985.
【EB15】Hobson, P. A., Norton, B., “Verified accurate performance simulation model of direct thermosyphon solar energy water heaters”, ASME J. Sol. Energy Eng. 110, pp. 282-292, 1988.
【EB16】Varga, S., Oliveira, A., Afonso, C., “Characterization of thermal diode panels for use in the cooling season in buildings”, Energy and Buildings. 34, pp. 227-235, 2002.
【EB17】Fred Nashed, Time-Saver Details for Exterior Wall Design, McGRAW-HILL, 1995.
【EB18】G.L. Morrison, D.J.B. Ranatunga, Thermosyphon circulation in solar collectors Solar Energy, Vol 24, No.2, pp. 191-198, 1980.
【EB19】AAMA, Aluminum Curtain Wall Design Guide Manual, Chicago:The Association, 1979.
一般出版品【CB】
【CB01】郭靜蓉,成大能源研究中心推動『太陽能熱水系統』的頭把交椅,成大產學雜誌,NO 20,2016。
【CB02】劉世鈞,節能減碳與永續發展,新頁圖書,2011。
【CB03】吳讓治 等,台灣地區帷幕牆建築綜合性能之研究,中華民國建築學會,1985。
【CB04】黃清毅,金屬帷幕牆設計技術手冊之編訂,內政部建築研究所,2003。
【CB05】谷下市松,太陽能概論,台灣科技圖書公司,2002。
網際網路【CH】
【CH01】再生能源資訊網-再生能源知識館,經濟部能源局。
校內:2025-01-22公開