簡易檢索 / 詳目顯示

研究生: 陳永勛
Chen, Yung-Feng
論文名稱: 硫酸鈉溶液環境下卜作嵐水泥基本力學性質之研究
A Study of the Mechanical Properties of Pozzolanic Cement under Sulfate Enviroments
指導教授: 王建力
Wang, Jian-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 124
中文關鍵詞: 硫酸鈉飛灰爐石
外文關鍵詞: sulfate sodium enviroment, fly ash, blast slag
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去建築材料的運用上,提升水泥於複雜環境中的抗侵蝕能力已有眾多的研究,其中包含抵抗硫酸鹽環境抵抗能力也是重要的研究項目之一。在ASTM( American Society for Testing and Materials )通常針對水泥受到硫酸鹽類侵蝕後的膨脹程度以及抗壓強度來定義其對此環境的抵抗能力強弱。而本研究中,我們嘗試採用抗壓強度以及斷裂韌度來觀察水泥力學性質上於硫酸鈉環境中的變化結果來解釋其受腐蝕的行為變化,並利用超音波檢測實驗作為交叉比對,以提供後人作為參考依據。
    研究中使用三種飛灰爐石粉比例取代部分水泥,分別為0%、15%、30%的取代率,然後將三種取代率水泥試體分別浸泡於0%、5%、10%、15%不同重量百分濃度的硫酸鈉養護環境下進行養護,而於0天、7天、14天、28天、56天、84天養護齡期取出進行基本力學試驗以及超音波檢測。
    實驗結果顯示,三種取代率水泥於0天至28天養護齡期時所表現的力學性質皆隨養護天數增加強度有上升的趨勢,28天後強度趨於穩定,其中28天的強度以10%硫酸鈉濃度中15%飛灰爐石粉取代率的強度最高。而超音波檢測結果顯示,各取代率水泥試體於各濃度硫酸鈉溶液中,其結構表現上,P波與S波於0天至28天有上升的趨勢,28天後變化即趨於穩定些微上升或下降。

    There are many researches to study the resistant ability of cement as building materials in the complex environments, and the study of sulfate resistance is one of the most important subjects. American Society for Testing and Materials (ASTM) uses the expansion coefficients and uniaxial compressional strengths of the cements as indices to define the resistant ability of cement in the sulfate environment. In this study, the uniaxial compressional strengths and mode I fracture tougthnesses were used to record the mechanical behavior of cement samples in the sulfate environment. In addition, the P wave and S wave velocities were measured by the ultrasonic testing. These results were discussed and compared in this study.
    In this study, three different amounts of fly ash and blast slag(FABS) were selected for testing. They are 0%, 15%, 30% in weight, respectively. The Portland cement samples were mixed with these ingredients. Four different sulfate enviroments were prepared for curing. They are 0%, 5%, 10%, 15% of Na2SO4 in weight of solution. The testing periods was recorded at 0, 7, 14, 28, 56, 84 days, respectively. In each time interval, the uniaxial compressional tests, mode I fracture tougthnesses test, and the ultrasonic testing were performed.
    The experimental results show that both the uniaxial compressional strengths and mode I fracture tougthnesses increase as the curing time increases up to 28 days. After 28 days, both the uniaxial compressional strengths and mode I fracture tougthnesses reach stable values. It is found that the strengths of samples with 15% FABS reach maximum in 10 % of Na2SO4 in weight of solution. The results from the ultrasonic testings show that P and S wave velocities become greater as the time increases up to 28 days. However, after 28 days, these values become stable.

    第一章 緒論 1 1-1前言 1 1-2研究動機與目的 3 1-3研究內容與流程 4 第二章 文獻回顧與基本理論 7 2-1混凝土耐久性性質 7 2-2卜作嵐材料介紹 11 2-2-1 飛灰介紹與特性 12 2-2-2爐石介紹與特性 13 2-4-1添加飛灰對於混凝土新拌性質的影響 15 2-2-5添加爐石粉對混凝土新拌性質的影響 17 2-3水泥水化反應與卜作嵐反應 18 2-4 硫酸鹽侵蝕 20 2-4-1硫酸鹽侵蝕機制 20 2-4-2硫酸鈉侵蝕與硫酸鎂侵蝕 21 2-4-3影響硫酸鹽侵蝕其他因素 22 2-5添加卜作嵐材料對混凝土耐久性影響 26 2-5-1添加飛灰對混凝土耐久性影響 27 2-5-2添加爐石粉對混凝土耐久性影響 27 2-6材料斷裂 28 2-6-1斷裂力學介紹 28 2-6-2斷裂力學基本理論 29 2-6-3平面應變斷裂韌度標準試驗 36 2-7 超聲波測定 38 2-7-1 波傳性質 38 2-7-2 超音波偵測技術 40 第三章 實驗設備與方法 41 3-1實驗設備介紹 41 3-2試體製備流程 43 3-2-1試體材料 43 3-2-2 自密實飛灰爐石水泥製備 48 3-2-3 硫酸鈉溶液環境設定 51 3-3 實驗規劃 52 3-4試驗步驟 58 3-4-1單軸壓縮試驗 58 3-4-2 I型斷裂韌度試驗 59 第四章 實驗結果與討論 60 4-1 單軸壓縮試驗結果 60 4-1-1單軸壓縮試驗-飽和石灰水 60 4-1-2單軸壓縮試驗-5%硫酸鈉溶液 64 4-1-3 單軸壓縮試驗-10%硫酸鈉溶液 69 4-1-4 單軸壓縮試驗-15%硫酸鈉溶液 73 4-1-5單軸壓縮試驗-小結 77 4-2 I型斷裂韌度試驗結果 84 4-2-1 I型斷裂韌度試驗–飽和石灰水 84 4-2-2 I型斷裂韌度試驗-5%硫酸鈉溶液 87 4-2-3 I型斷裂韌度試驗-10%硫酸鈉溶液 91 4-2-4 I型斷裂韌度試驗-15%硫酸鈉溶液 95 4-2-5 I型斷裂韌度試驗-小結 98 4-3 動態超音波檢測 108 4-3-1 動態超音波檢測-P wave 108 4-3-2 動態超音波檢測-S wave 111 4-3-3 動態超音波檢測-小結 114 第五章 結論與建議 115 5-1結論 115 5-2建議 115 文獻回顧 116

    [1]甘嘉瑋(2009),「超音波檢測技術評估水泥漿體之凝結特性」,國立台灣科技大學營建工程系碩士論文。
    [2]行政院公共工程委員會(1999),公共工程飛灰混凝土使用手冊,台北:行政院公共工程委員會。
    [3]行政院公共工程委員會(2001),公共工程高爐石混凝土使用手冊,台北:行政院公共工程委員會。
    [4]吳清哲(2006),「低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式評估」,國立中央大學土木工程研究所碩士論文。
    [5]李繼業,劉福勝(2005),新型混凝土實用技術手冊,北京市:化學工業出版。
    [6]林以常(2000),「三點彎曲作用下岩石破裂韌度量測之研究」,國立成功大學資源工程學系碩士論文。
    [7]林平全(1995),飛灰混凝土,科技圖書股份有限公司。
    [8]陳文華,張士欽(1995)譯,基本工程破裂力學,台北市:國立編譯館(譯自Broek,D., Elementary engineering fracture machanics. --4th ed. 1986)。
    [9]陳兆勛(1999)譯,破裂力學之實際應用,台北市:國立編譯館(譯自(Broek,D., The practical use of fracture mechanics,1989)。
    [10]陸基孟(1993),地震探勘原理(下),東營市:石油大學出版社:新華經銷。
    [11]馮炳勳(2006),「台灣水泥業因應二氧化碳排放減量策略之研究」,國立成功大學資源工程研究所博士論文。
    [12]黃兆龍(1997),混凝土性質與行為,台北市:詹氏書局。
    [13]黃兆龍(2007),卜作嵐混凝土使用手冊,台北市:中興工程顧問社出版:展智文化發行:科技總經銷。
    [14]鄭瑞濱(2006),「建築物結構老化與劣化非破壞性檢測技術之建置」,台北縣:內政部建築研究所。
    [15]賴禹村(2011),「硫酸鈉溶液環境下飛灰水泥基本力學性質之研究」,國立成功大學資源工程學系碩士論文。
    [16]鐘翊珊(2011),「二氧化碳封存機制下對岩石力學性質的影響」,國立成功大學資源工程學系碩士論文。
    [17]Adamopoulou ,E., P. Pipilikaki , M.S. Katsiotis , M. Chaniotakis , M. Katsioti (2011),“ How sulfates and increased temperature affect delayed ettringite formation (DEF) in white cement mortars,”Construction and Building Materials,vol. 25,pp.3583-3590.
    [18]Atahan ,H.N. , D. Dikme (2011),“Use of mineral admixtures for enhanced resistance against sulfate attack,”Construction and Building Materials,vol. 25,pp.3450-3457.
    [19]Aye,T. , Chiaki T. Oguchi (2011),“Resistance of plain and blended cement mortars exposed to severe sulfate attacks,” Construction and Building Materials,vol .25,pp.2988-2996.
    [20]Bassuoni ,M.T. , M.L. Nehdi (2009),“ Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading,” Cement and Concrete Research,vol.39,pp.206-226.
    [21]Caoa C.,Sunb W.,Qinb H. (2000),“The analysis on strength and fly ash effect of roller-compacted concrete with high volum fly ash,”Cement and Concrete Research,vol.30,pp.71-75.
    [22]Elahi,A, Pam,B.,Nanukuttan SV,Khan QUZ (2010),“Mechanical and durability properties of high performance concretes containing supplementary cementitous materials,”Construction and Building Materials, vol.24, pp. 292 -299.
    [23]Griffith ,A .A, (1920),“ The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society of London, Series A, vol.221, pp.163-198.
    [24]Gollop ,R.S., H.F.W. Taylor (1996),“Microstructural and microanalytical studies of sulfate attack.V.Comparison of different slag blends,”Cement and Concrete Research,vol.26,pp.1029-1044.
    [25]Irwin, G. R. (1957),“Analysis of stresses and strains near the end of a crack traversing a Plate,” Journal of Applied Mechanics ,vol.24,pp.361-364.
    [26]Irassar, E.F., A. Di Maio and O.R. Batic (1996),“Sulfate attack on concrete with mineral admixtures,”Cement and Concrete Research,vol. 26,pp.113-123.
    [27]Indu ,G., K. Ramamurthy (2012),“Behaviour of foam concrete under sulphate environments,”Cement & Concrete Composites,vol.34,pp.825-834
    [28]Lawrence ,C. D. (1995),“Mortar expansions due to delayed ettringite formation. effects of curing period and temperature,” Cement and Concrete Research,vol.25,pp.903-914.
    [29]Mucteba Uysal , Mansur Sumer (2011),“ Performance of self-compacting concrete containing different mineral admixtures,”Construction and Building Materials ,vol.25,pp. 4112-4120.
    [30]Mansur Sumer (2012),“Compressive strength and sulfate resistance properties of concretes containing class F and class C fly ashes,”Construction and Building Materials,vol.34,pp.531-536.
    [31]Neville,A. (2004),“ The confused world of sulfate attack on concrete,” Cement and Concrete Research,vol.34,pp.1275-1296.
    [32]Parande ,A.K., B. Ramesh Babu, K. Pandi, M.S. Karthikeyan, N. Palaniswamy (2011),“ Environmental effects on concrete using ordinary and pozzolana portland cement,”Construction and Building Materials,vol. 25,pp. 288-297.
    [33]Santhanam ,M., Menashi D. Cohen, Jan Olek (2002),“ Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars,” Cement and Concrete Research,vol.32,pp .585-592 .
    [34]Sahmaran ,M., T.K. Erdem, I.O. Yaman (2007),“Sulfate resistance of plain and blended cements exposed to wetting–drying and heating–cooling environments,” Construction and Building Materials,vol.21,pp.1771-1778.
    [35]Sotiriadis, K., E. Nikolopoulou, S. Tsivilis (2012),“ Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature,” Cement & Concrete Composites,vol. 34,pp.903-910.
    [36]Srawley J. E. ,W. F. Brown (1965), “Fracture toughness testing,”Fracture toughness testing and its applications “ASTM STP381

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE