| 研究生: |
林輝慶 Lin, Hui-Ching |
|---|---|
| 論文名稱: |
兆赫波輻射的產生與偵測 The Generation and Detection of Terahertz Radiation |
| 指導教授: |
黃正雄
Hwang, Jenn-Shyong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 兆赫波 、自相干儀 、電光取樣 、光電導模式 、光整流模式 |
| 外文關鍵詞: | autocorrelator, E-O sampling, optical rectification, photoconduction, T-ray, terahertz radiation |
| 相關次數: | 點閱:73 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
介於遠紅外光與微波之間的電磁波,其頻率範圍在0.1~30 terahertz (or THz, 1THz=1012Hz) 的波段,稱之為兆赫波(THz wave)。在傳統的電磁學研究中,對於這個波段的電磁波並沒有多所著墨,於是在電磁波頻譜的研究中便留下了一個兆赫波波段的斷層,而這樣的現象也被稱之為所謂電磁波頻譜中的“兆赫波鴻溝(terahertz gap)”。
在本論文中,我們建立一套兆赫波的產生與檢測系統,分別利用光電導模式(Photoconduction)及電光取樣(Electro-Optical Sampling)的方法,來產生與偵測兆赫波,並利用此系統研究以不同的InP表面-本徵-N+ (SIN+) 微結構之樣品做為輻射器(emitter)所產生之兆赫波訊號。藉由光調制光譜學(PR)量測半導體輻射器的內建電場,驗證了位於半導體中不同層的電場,會產生不同的兆赫波訊號,並探討各種不同結構的輻射器所輻射的兆赫波其強度與輻射器結構、內建電場的關係。此外,我們也建立一套自相干儀(autocorrelator)系統,對兆赫波實驗系統中鈦-藍寶石(Ti:Sapphire)脈衝雷射的脈衝寬度隨時做監控。
Terahertz (THz) radiation (THz waves), electromagnetic radiation in a frequency interval from 0.1 to 30 THz, is the next frontier in imaging science and technology. THz waves, or T-rays, occupy a large portion of the electromagnetic spectrum between the infrared and microwave bands. However, compared to relatively well-developed medical imaging at microwaves and optical frequencies, basic research, new initiatives and advanced technological developments in the THz band are very limited.
In this thesis, we present the details of our work which has successfully set up a system to generate and detect the terahertz waves. Photoconductive technique is used for radiation generation while electro-optical sampling is employed in the radiation detection. Electro-optical crystal ZnTe is used as the radiation sensor while GaAs wafer and various semiconductor surface intrinsic-N+ (SIN+) microstructures are used as the radiation emitters. The dependences of the intensities and frequency ranges of the THz waves, radiated from InP SIN+ structures, on the built-in electric field, top layer thickness of the structures and pumping power density are investigated.
Ti: Sapphire pulse laser with 80 femtosecond (fs) pulse width is used to pump and probe the THz radiation. Since the radiation power and spectrum are also strong related to the pulse width (80 femtosecond), an autocorrelator is also set up to monitor the pulse width of the laser pulse width.
[1] K. P. Yang, P. L. Richards and Y. R. Shen, Appl. Phys. Lett.
19, 320 (1971)
[2] D. H. Auston , K. P. Cheung and P. R. Smith, Appl. Phys.
Lett. 45, 284 (1984).
[3] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995)
[4] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 68 (12), 18 March 1996
[5] Q. Wu, M. Litz, and X. C. Zhang, Appl. Phys. Lett. 68 (21), 20 May 1996
[6] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 71, No. 10, 8 September 1997
[7] polarization >500:1 vertical , Tsunami User’s Manual.
[8] L. Xu, X. C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61(15), 12 October 1992
[9] X. C. Zhang, Y. Jin, K. Ware, X. F. Ma, and A. Rice, Appl. Phys. Lett. 64(5), 31 January 1994
[10] A. Rice, Y. Jin, X. F. Ma, and X. C. Zhang, Appl. Phys. Lett. 64(11), 14 March 1994
[11] B. B. Hu, X. C. Zhang, and D. H. Auston, Appl. Phys. Lett. 56(6), 5 February 1990
[12] X. C. Zhang and D.H. Asuton , J. Appl. Phys. , Vol. 71, No.1, 1 January 1992.
[13] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56(11), 12 March 1990.
[14] 許景周,汪力,張希成,光訊,第87期2000年12月。
[15] G. Gallot and D. Grischkowsky, J. Opt. Soc. Am. B, Vol. 16, No. 8, August 1999
[16] Robert W. Boyd, Nonlinear Optics
[17] Hecht, Optics (third edition)
[18] Paul C. M. Planken, Han-Kwang Nienhuys, Huib J. Bakker, Tom Wenckebach, J. Opt. Soc. Am. B, Vol. 18, No. 3, March 2001
[19] 周維揚,調製光譜研究InAlAs、InP的表面費米能階與表面態分佈,國立成功大學博士論文(1997)。
[20] 『Electroreflectance and Photoreflectance Studies of Surface Fermi Level and Surface Densities of INP SIN+ Structures』, W. C. Hwang, Y. J. Cheng, Y. C. Wang, and J. S. Hwang, Journal of Vacuum Science & Technology B, 18, p. 1967(2000). SCI.
[21] S. L. Tyan, Y. C. Wang and J. S. Hwang, Appl. Phys. Lett. 68, 1(1996).
[22] J. S. Hwang, W. Y. Chuo, M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys. 82, 3888(1997).
[23] W. Y. Chou, G. S. Chang, W.C. Hwang and J. S. Hwang, J. Appl. Phys., 83, 3690 (1998).
[24] 黃啟發,脈衝對撞鎖模雷射之研究:脈衝壓縮與脈衝寬度之量測,國立中正大學碩士論文(1993)。
[25] Editor: W.Kaiser, Ultrashort Laser Pulses(and Applications)
[26] Editor: S.L.Shapiro, Ultrashort Light Pulses(Picosecond Techniques and Applications)
[27] Kenneth. L. Sala. Geraldine a Kenney-Wallace and Gergorye. Hall. “CW Autocorrelation Measurement of Picosecond Laser Pulses” IEEE. Vol. QE-16. 990-996(1980)
[28] J. A. Armstrong, “Measurements of picosecond laser pulse widths,” Appl. Phys. Lett. , vol. 10, pp. 16-18, 1967.
[29] Bradley Ferguson and Xi-Chang Zhang, nature materials, Vol 1, September 2002
[30] Daniel Clery, Science Vol 297,page 763, 2 August 2002
[31] Hu, B. B. & Nuss, M. C. Imaging with terahertz waves. Opt. Lett. 20, 1716-1718 (1995)
[32] Loffler, T. et al. Terahertz dark-field imaging of biomedical tissue. Optics Express 9, 616-621 (2001).
[33] Markelz, A. G., Roitberg, A. & Heilweil, E. J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42-48(2000).
[34] Cole, B. E., Williams, J. B., Sherwin, M. S. & Stanly, C. R. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60-65(2001).
[35] Q. Wu, F.G. Sun, P. Campbell, and X. C. Zhang, Appl. Phys. Lett. 68(23), 3 June 1996.
[36] M. Achermann, U. Siegner, L. E. Wernersson, U. Keller, Appl. Phys. Lett., Vol. 77, No. 21, 20 November 2000.