| 研究生: |
楊子賢 Yang, Zi-Xian |
|---|---|
| 論文名稱: |
2-氯丙酸在銅(100)和氧/銅(100)表面上的熱反應研究 Thermal Chemistry of 2-Chloropropanoic Acid on Cu(100) and O/Cu(100) Surfaces |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 超高真空系統 、程式控溫反應/脫附(TPR/D) 、X光光電子能譜 、Cu(100) 、2-氯丙酸 |
| 外文關鍵詞: | 2-chloropropionic acid, temperature-programmed reaction/desorption (TPR/D), X-ray photoelectron spectroscopy (XPS), Cu(100) |
| 相關次數: | 點閱:144 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是研究在超高真空系統中,2-氯丙酸(CH3CHClCOOH)於Cu(100)單晶表面的熱分解反應,探討中間態及反應氣相產物。而利用的表面分析技術包括:程序控溫反應/脫附(temperature- programmed reaction/desorption)、反射式紅外光吸收光譜分析(reflection-absorption infrared spectroscopy)、歐傑電子能譜分析(Auger electron spectroscopy)和X-光光電子能譜(X-ray photoelectron spectroscopy, XPS)。
CH3CHClCOOH/Cu(100)其熱反應的主要脫附產物有H2、H2O、H2C=CH2、CO、CO2、HCl、CH3CH=C=O。由RAIRS與XPS實驗,發現在無氧面120 K時僅有小部分的CH3CHClCOOH斷O-H和C-Cl鍵。到250 K時O-H鍵已完全斷裂,此時表面中間物為CH3CHClCOO(a)與CH3CH2COO(a)。持續升溫到400 K時表面只留下CH3CH2COO(a),接著400 K後CH3CH2COO(a)開始分解形成H2、H2C=CH2、CO、CO2脫附,而710 K後有高溫產物HCl、CH3CH=C=O的產生。
CH3CHClCOOH在O/Cu(100)其熱反應的主要脫附產物與無氧時相同。根據RAIRS與XPS實驗發現在有氧表面會幫助斷O-H鍵,且抑制C-Cl鍵的斷裂。在120 K時大約一半的CH3CHClCOOH斷O-H鍵形成CH3CHClCOO(a)羧酸根結構。隨著溫度上升到250 K時,O-H鍵已完全斷裂而C-Cl鍵幾乎保持完整。到了380 K時C-Cl鍵才完全斷裂並形成CH3CH2COO(a)與新吸附結構η2-CH3CHCOO(a),接著400 K後開始有產物H2、H2C=CH2、CO、CO2脫附,而720 K後有高溫產物HCl、CH3CH=C=O的產生。
Thermal decomposition of CH3CHClCOOH on Cu(100) causes the desorption of H2, H2O, H2C=CH2, CO, CO2, HCl and CH3CH=C=O. At 120 K, RAIRS and XPS show that a small portion of adsorbed CH3CHClCOOH molecules undergoes O–H and C–Cl bond scission, but most of them remain intact. After the O–H bond scission at 250 K, two intermediates of CH3CH2COO(a) and CH3CHClCOO(a) are generated on the surface. CH3CHClCOO(a) decreases continuously due to C–Cl bond scission in the temperature range of 250 K~400 K, being transformed into CH3CH2COO(a). Upon heating to a temperature higher than 400 K, CH3CH2COO(a) starts to decompose to form H2, H2C=CH2, CO, CO2, which are desorbed between 400 K and 500 K. The high temperature products HCl and CH3CH=C=O are generated above 710 K.
The presence of preadsorbed oxygen promotes O–H bond cleavage of CH3CHClCOOH at 120 K, but suppressing the C–Cl bond dissociation. Only a trace amount of the molecule breaks their C–Cl bonds even at 250 K. RAIRS and XPS show that about half of the CH3CHClCOOH undergoes O–H scission at 120 K, forming CH3CHClCOO(a). Upon heating to 380 K, two intermediates of CH3CH2COO(a) and η2-CH3CHCOO(a) are generated, at the sacrifice of CH3CHClCOO(a). On an oxygen-precovered Cu(100), the thermal decomposition products are similar to those from clean surface.
1. Vickerman, J. C. Surface Analysis-The Principle Techniques, Wiley & Sons, New York, 1997.
2. Sexton, B. A., Summary Abstract: Vibrational Spectra of Formate and Acetate Species on Copper (100). Journal of Vacuum Science & Technology 1980, 17, 141-142.
3. Bowker, M.; Madix, R. J., The Adsorption and Oxidation of Acetic Acid and Acetaldehyde on Cu(110). Applications of Surface Science 1981, 8, 299-317.
4. Baumann, P.; Pirug, G.; Reuter, D.; Bonzel, H. P., Uhv Adsorption Studies of K/H2O on Pt(111) and O/CH3COOH on Cu(110): Orientation and Intermediates. Surface Science 1995, 335, 186-196.
5. Lee, J.-G.; Ahner, J.; Mocuta, D.; Denev, S.; Yates, J. T., Thermal Excitation of Rotation of the Methyl Group in Chemisorbed Acetate on Cu(110). The Journal of Chemical Physics 2000, 112, 3351-3357.
6. Karis, O.; Hasselström, J.; Wassdahl, N.; Weinelt, M.; Nilsson, A.; Nyberg, M.; Pettersson, L. G. M.; Stöhr, J.; Samant, M. G., The Bonding of Simple Carboxylic Acids on Cu(110). The Journal of Chemical Physics 2000, 112, 8146-8155.
7. Barteau, M. A.; Bowker, M.; Madix, R. J., Formation and Decomposition of Acetate Intermediates on the Ag(110) Surface. Journal of Catalysis 1981, 67, 118-128.
8. Erley, W.; Chen, J. G.; Sander, D., The Formation of Acetic Anhydride by Decomposition of Acetic Acid Adsorbed on Ni(111). Journal of Vacuum Science & Technology A 1990, 8, 976-978.
9. Bowker, M.; Morgan, C.; Couves, J., Acetic Acid Adsorption and Decomposition on Pd(110). Surface Science 2004, 555, 145-156.
10. Yang, X.; He, Z. H.; Zhou, X. J.; Xu, S. H.; Leung, K. T., Vibrational Eeels and DFT Study of Propionic Acid and Pyruvic Acid on Ni(100): Effects of Keto Group Substitution on Room-Temperature Adsorption and Thermal Chemistry. Applied Surface Science 2006, 252, 3647-3657.
11. Yuzawa, T.; Shioda, T.; Kubota, J.; Onda, K.; Wada, A.; Domen, K.; Hirose, C., Polarization Characteristics from Sfg Spectra of Clean and Regulatively Oxidized Ni(100) Surfaces Adsorbed by Propionate and Formate. Surface Science 1998, 416, L1090-L1094.
12. Schiess, P.; Radimerski, P., Reversible, Thermische Isomerisierung Zwischen Α, Β-Γ, Δ-Ungesättigten Aldehyden Und Alkenylketenen Durch [1,5]-H-Verschiebung. Valenzisomerisierung Von Cis-Dienonen, V [1].
Helvetica Chimica Acta 1974, 57, 2583-2597.
13. Vohs, J. M.; Barteau, M. A., Reaction Pathways and Intermediates in the Decomposition of Acetic and Propionic Acids on the Polar Surfaces of Zinc Oxide. Surface Science 1988, 201, 481-502.
14. Kim, K. S.; Barteau, M. A., Pathways for Carboxylic Acid Decomposition on Titania. Langmuir 1988, 4, 945-953.
15. Martinez, R.; Huff, M. C.; Barteau, M. A., Ketonization of Acetic Acid on Titania-Functionalized Silica Monoliths. Journal of Catalysis 2004, 222, 404-409.
16. Schulz, K. H.; Cox, D. F., Reaction Pathways of C3 Carboxylates on Copper(1+) Oxide(100): Acrylic and Propionic Acid Decomposition. The Journal of Physical Chemistry 1992, 96, 7394-7398.
17. Lin, J. L.; Bent, B. E., Carbon-Halogen Bond Dissociation on Copper Surfaces: Effect of Alkyl Chain Length. The Journal of Physical Chemistry 1992, 96, 8529-8538.
18. Lin, J.-L.; Teplyakov, A. V.; Bent, B. E., Effects of Alkyl Chain Structure on Carbon−Halogen Bond Dissociation and Β-Hydride Elimination by Alkyl Halides on a Cu(100) Surface. The Journal of Physical Chemistry 1996, 100,
10721-10731.
19. Lin, J. L.; Bent, B. E., Two Mechanisms for Formation of Methyl Radicals During the Thermal Decomposition of Methyl Iodide on a Copper Surface. The Journal of Physical Chemistry 1993, 97, 9713-9718.
20. Jenks, C. J.; Chiang, C. M.; Bent, B. E., Alkyl Iodide Decomposition on Copper Surfaces: .Alpha.-Elimination And .Beta.-Hydride Elimination from Adsorbed Alkyls. Journal of the American Chemical Society 1991, 113, 6308-6309.
21. Lin, Y. S.; Lin, J. S.; Liao, Y. H.; Yang, C. M.; Kuo, C. W.; Lin, H. P.; Fan, L. J.; Yang, Y. W.; Lin, J. L., Reaction Pathways of 2-Iodoacetic Acid on Cu(100):
Coverage-Dependent Competition between C-I Bond Scission and COOH Deprotonation and Identification of Surface Intermediates. Langmuir 2010, 26, 8218-25.
22. 李思慧,"1-氯-2-丙醇在銅(100)和氧/銅(100)表面上的熱反應研究"國立成功大學化學所碩士論文, 2014.
23. Redhead, P. A., Thermal Desorption of Gases. Vacuum 1962, 12, 203-211.
24. Vickerman, J. C., Surface Analysis-the Principle Techniques; Wiley & Sons: New York, 1997. 96
25. Lin, J. L. Carbon-Halogen Bond Dissociation at Copper Surface: Alkyl Radicals versus Metal Alkyls, Columbia University, P29-30, 1993.
26. Auger, P., Surl'effet photoélectrique composé. J. Phy. Radium, 1925, 6, 205.
27. Ertl, G.; Kuppers, J. Low Energy Electrons and Surface Chemistry, Verlag Chemie, Germany, 22, 1974.
28. 張沛騰,"2-氟乙醇及1,4-dioxane 在Cu(100)表面上的熱反應與吸附位向的研究"國立成功大學化學所碩士論文, 2003.
29. 王伯鼎,"Anthradithiophene 與其衍生物在金(111)表面上的薄膜成長之研究"國立清華大學化學所碩士論文, 2009.
30. Sexton, B. A., Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu(100). Surf. Sci. 1979, 88, 299-318.
31. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
32. Sexton, B. A.; Hughes, A. E., A Comparison of Weak Molecular Adsorption of Organic Molecules on Clean Copper and Platinum Surfaces. Surf. Sci. 1984, 140, 227-248.
33. Brosseau, R.; Brustein, M. R.; Ellis, T. H., Water Adsorption on Cu(100): The Effect of Defects. Surf. Sci. 1993, 294, 243-250.
34. Sueyoshi, T.; Sasaki, T.; Iwasawa, Y., Oxygen Atoms on Cu(100) Formed at 100 K, Active for Co Oxidation and Water−Hydrogen Abstraction, Characterized by Hreels
and Tpd. J. Phys. Chem. B 1997, 101, 4648-4655.
35. Ellis, T. H.; Kruus, E. J.; Wang, H., Adsorption and Reaction of Water on Oxygen Precovered Cu(100). J. Vac. Sci. Technol. A 1993, 11, 2117-2121.
36. Kolovos-Vellianitis, D.; Kammler, T.; Küppers, J., Interaction of Gaseous Hydrogen Atoms with Oxygen Covered Cu(100) Surfaces. Surf. Sci. 2001, 482–485, Part 1, 97
166-170.
37. Ying, D. H. S.; Robert, J. M., Thermal Desorption Study of Formic Acid Decomposition on a Clean Cu(110) Surface. Journal of Catalysis 1980, 61, 48-56.
38. Chorkendorff, I.; Rasmussen, P. B., Reconstruction of Cu(100) by Adsorption of Atomic Hydrogen. Surf. Sci. 1991, 248, 35-44.
39. Bryden, T. R.; Garrett, S. J., Adsorption and Polymerization of Formaldehyde on Cu(100). J. Phys. Chem. B 1999, 103, 10481-10488.
40. Kim, K. S.; Barteau, M. A., Structure and Composition Requirements for Deoxygenation, Dehydration, and Ketonization Reactions of Carboxylic Acids on TiO2(001) Single-Crystal Surfaces. Journal of Catalysis 1990, 125,
353-375.
41. Bock, H.; Mohmand, S.; Hirabayashi, T.; Semkow, A., Gasphasen-Reaktionen, 30. Thioacrolein: Das Stabilste C3H4S-Isomere Und Sein Pe-Spektroskopischer Nachweis in Der Gasphase. Chemische Berichte 1982, 115, 1339-1348.
42. Jakobsen, R. J.; Mikawa, Y.; Allkins, J. R.; Carlson, G. L., The Vibrational Spectra of Propanoic Acid. Journal of Molecular Structure 1971, 10, 300-303.
43. Katon, J. E.; Carll, T. P.; Bentley, F. F., Infrared Spectra-Structure Correlations for Monohalogenated Monocarboxylic Acids. Appl. Spectrosc. 1971, 25,229-232.
44. Isa, S. A.; Joyner, R. W.; Matloob, M. H.; Roberts, M. W., A Study of the Interaction of Formic Acid and Propionic Acid with Oxidised Lead and Copper Surfaces by Photoelectron Spectroscopy and Leed. Applications of Surface Science 1980, 5, 345-360.
45. Winters, H. F., The Etching of Cu(100) with Cl2. J. Vac. Sci. Technol. A 1985, 3,786-790.