| 研究生: |
鍾彭 Chung, Pang |
|---|---|
| 論文名稱: |
聚苯乙烯-聚環氧乙烷嵌段共聚物微胞模板法製備膠體鈣鈦礦奈米晶及其穩定性 Synthesis and Stability of Colloidal Perovskite Nanocrystals Templated by Polystyrene-block-Poly(ethylene oxide) Micelles in Solution |
| 指導教授: |
孫亞賢
Sun, Yasen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 225 |
| 中文關鍵詞: | 鈣鈦礦膠束溶液 、嵌段共聚物 、微胞 、共晶 、配合物 |
| 外文關鍵詞: | Perovskite micelle solution, Block copolymer, Micelle, eutectic behavior, complexation |
| 相關次數: | 點閱:49 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦作為新興的光電材料在近十幾年發展迅速。有機-無機鹵素鈣鈦礦具備可調控帶隙,高吸收係數等優點,其應用性亦非常廣泛。目前在感測器,太陽能電池,發光二極管等方面已有充分的實用性。這種材料對於光,熱,濕和輻射的敏感度極高,容易降解。許多研究人員正在理解其降解機制並採取措施來降低鈣鈦礦的缺陷。採用添加劑是目前常見的補救方法,例如小分子,高分子等,這些材料已有學者證明其可行性。小分子利用有機長鏈接枝在鈣鈦礦表面以防止顆粒聚集而沉澱,提升膠束溶液中的穩定性。本文希望利用嵌段高分子作為模板來製備出具有長效穩定性, 均一形貌的鈣鈦礦。高分子具備在溶液中自組裝的性質,可以通過改變溶劑,分子量來調整其奈米結構。當滿足了臨界微胞濃度時,嵌段共聚物形成微胞。本文使用PS-b-PEO作為奈米級反應器,使用非極性溶劑來合成鈣鈦礦(MAPbBr3)膠束溶液。高分子在溶液會形成微胞來保護鈣鈦礦,避免其接觸水,空氣等。嵌段共聚物也作為長鏈刷抑制了鈣鈦礦顆粒的凝聚,保證了在溶液中的顆粒分佈能力。PEO中氧原子通過貢獻兩個電子,與鈣鈦礦前驅體PbBr2中的Pb2+離子進行配位反應。PEO不僅鈍化了鈣鈦礦的缺陷,還通過調控嵌段高分子的濃度來實現了鈣鈦礦形貌的可控性。此種高分子在鈣鈦礦膠束溶液領域的研究極少,目前主力為薄膜態表現優化。因此本文的成果具有創新和前瞻性。高分子微胞製備的鈣鈦礦奈米粒子通過使用SAXS測量,來獲取形貌,尺寸和分佈等資訊。其離子資訊通過UV測量。鈣鈦礦的晶格表現由WAXS和XRD判定。鈣鈦礦的光之發光性能和量子效率分別由PL和PLQY測量。高分子和鈣鈦礦的形貌表現通過TEM得到了證明。此外,本文發現了一種全新的晶體,由PEO和鈣鈦礦前驅體PbBr2共晶產生。在加入前驅體的過程中發現了PbBr2因為PEO加入導致的晶相轉變。從原本的正交相轉化為2D 六角堆積的晶格形貌。由PEO和PbBr2產生的配合物出現了不規則的奈米片和多邊形結構,為相同晶型。另外在產物離心後的沉澱物中發現了此種晶型成長為更大尺寸的3D結構衍生物。這種配合物的調控對於鈣鈦礦的合成具有極高的關聯性。它們涉及了PEO和Pb2+的強交互作用,導致[PbBr3-],[PbBr64-]和[PbBr42-]的產生,影響鈣鈦礦中另一個前驅體MABr與其的反應動力學。本文發現鈣鈦礦容易在高的嵌段共聚物濃度和高的Br離子含量時快速降解。一旦配合物在溶液中佔主導地位,鈣鈦礦的熒光性質表現不佳。低的高分子濃度下製備的鈣鈦礦表現優異。方法一發現了MABr含量影響鈣鈦礦的數量及形貌。前驅體溶液通過額外的離心處理再加入MABr後可以合成出單一相鈣鈦礦晶體,溶液中沒有多餘的配合物。後續通過精準控制BCP濃度和配合物的數量,本文合成了結晶性很高的鈣鈦礦晶體,且具有形貌均一的優點和PL穩定性。方法二提到當配合物及PbBr2能夠以化學計量的方式與MABr充分反應,得到了單一的立方MAPbBr3鈣鈦礦晶體,沒有多餘的配合物殘留在溶液中。這些利用PS-b-PEO作為奈米級反應器合成的鈣鈦礦膠束顆粒,不需要在手套箱製備,且其對於水和空氣的抗性提升。通過觀察半年後製備的鈣鈦礦膠束顆粒,仍然表現出優異的PL性質。因為沒有其他文獻的支持,我們通過測試找到了利用PS-b-PEO製備鈣鈦礦的最佳路線。本文依次找到了針對鈣鈦礦合成的最佳BCP老化條件,BCP濃度和前驅體數量。在此基礎上,進一步調控BCP和前驅體的反應,去除多餘的前驅體和雜質來合成具備單一鈣鈦礦相的膠束溶液。其合成方法簡單,快速。它們的長效穩定性及形貌可控性有助於後續的鈣鈦礦應用。
As a photoelectric material, perovskite has seen rapid development in recent decades. Organic-inorganic halogen perovskites exhibit adjustable band gaps and high absorption coefficients, making them widely applicable in sensors, solar cells, light-emitting diodes, and other areas. However, perovskite is highly sensitive to light, heat, humidity, and radiation, leading to easy degradation. Numerous studies have actively investigated its degradation mechanisms to explore ways to mitigate defects. One effective method is using additives such as small molecules and polymers, which have been proven effective. Small molecules attached to the surface of perovskite to prevent particle aggregation and settling, enhance the stability of micellar solutions. This study aims to use block copolymers (BCP) as templates to fabricate perovskites (MAPbBr3) with long-term stability and uniform morphology. Block copolymers have the property of self-assembly in solutions. The shape of the self-assembled nanostructure could be adjusted by changing the solvents and their molecular weights. In perovskite colloidal solutions, the polymers formed micelles to protect perovskite from water and air. When the critical micelle concentration is reached, BCP forms micelles. The perovskite NCs are encapsulated inside the micelles. BCP acts as a long-chain brush, inhibiting perovskite particle aggregation and ensuring particle distribution in solution. Oxygen atoms in PEO coordinate with Pb2+ ions of precursor PbBr2, contributing two electrons. PEO not only passivates perovskite defects but also controls morphologies by adjusting the PS-b-PEO concentration. Research on such perovskite colloidal solutions templated by PS-b-PEO is limited, with most focusing on optimizing film performance. Therefore, this thesis is rendered innovative and forward-looking. The morphology, size, and distribution of perovskite NCs prepared by micelles are measured using SAXS. Ion information is measured by UV-VIS spectroscopy. Lattice behavior is measured by WAXS and XRD. PL properties and PL quantum efficiency are measured by PL and PLQY, respectively. TEM demonstrates the morphologies of PS-b-PEO micelles and perovskites. A novel crystal produced from the eutectic of PEO and precursor PbBr2 is discovered. The addition of PEO causes a phase transformation of PbBr2 crystals from an orthorhombic phase to a 2D hexagonal lattice. The complexes formed by PEO and PbBr2 exhibit irregular nanosheets and polygonal structures, which are identified as identical crystal types. Crystallites with larger 3D structures are found in the precipitates after centrifugation. Regulating PEO-Pb complexes is crucial for perovskite synthesis, as they involve strong interactions between PEO and Pb2+. [PbBr3-], [PbBr64-], and [PbBr42-] ion complexes appeared at the same time. These complexes affect the reaction kinetics of perovskite formation. Perovskite NCs degrade easily at high concentrations of BCP and high Br- ion contents. When the complexes dominate the solution, PL properties of perovskites are significantly diminished. We conducted two methods: method 1 reveals that MABr content influenced the quantity and morphologies of the perovskites. With an additional precursor solutions centrifugation step, cubic-perovskite NCs can be synthesized without redundant complexes remaining in the solutions. In method 2, we control the concentrations of BCP and the number of complexes precisely. Perovskites with high crystallinity and uniform morphologies are successfully synthesized. Moreover, perovskites exhibit high stability in an ambient environment. When the complexes fully react with MABr in a stoichiometric manner, cubic-MAPbBr3 perovskite NCs form with no excess complexes in solutions. Perovskites synthesized by PS-b-PEO do not require glove box preparation and show increased resistance to water and air. Even after six months, the MAPbBr3 NCs exhibit excellent PL properties. Finally, we successfully identify the optimal BCP aging condition, BCP concentration, and precursor quantity. Our synthesis method is simple and fast, rendering long-term PL stability and morphology control which will be beneficial for future perovskite applications.
(1) Weber, D. CH3NH3PbX3, Ein Pb(Ii)-System Mit Kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(Ii)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B 1978, 33 (12), 1443-1445.
(2) Kay, H. F.; Bailey, P. C. Structure and Properties of CaTiO3. Acta Crystallographica 1957, 10 (3), 219-226.
(3) Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chemical Reviews 2019, 119 (5), 3296-3348.
(4) Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media. Chemistry Letters 2012, 41 (4), 397-399.
(5) Tang, Z.; Guloy, A. M. A Methylviologen Lead (Ii) Iodide: Novel [PbI3-] Chains with Mixed Octahedral and Trigonal Prismatic Coordination. Journal of the American Chemical Society 1999, 121 (2), 452-453.
(6) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692-3696.
(7) Pankaj, P. K.; Anil, V. R. Perovskite Structured Materials: Synthesis, Structure, Physical Properties and Applications. In Recent Advances in Multifunctional Perovskite Materials, Poorva, S., Ashwini, K. Eds.; IntechOpen, 2022.
(8) Chan, K.; Wright, M.; Elumalai, N.; Uddin, A.; Pillai, S. Plasmonics in Organic and Perovskite Solar Cells: Optical and Electrical Effects. Advanced Optical Materials 2017, 5 (6), 1600698.
(9) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photoluminescent Properties. Inorganic Chemistry 2013, 52 (15), 9019-9038.
(10) Hou, J.; Cheng, H.; Takeda, O.; Zhu, H. Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide. Agewandte Chemie International Edition 2015, 54 (29), 8480-8484.
(11) Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Advanced Functional Materials 2016, 26 (15), 2435-2445.
(12) Wu, W.-Q.; Zhong, J.-X.; Liao, J.-F.; Zhang, C.; Zhou, Y.; Feng, W.; Ding, L.; Wang, L.; Kuang, D.-B. Spontaneous Surface/Interface Ligand-Anchored Functionalization for Extremely High Fill Factor over 86% in Perovskite Solar Cells. Nano Energy 2020, 75, 104929.
(13) Peighambardoust, N. S.; Sadeghi, E.; Aydemir, U. Lead Halide Perovskite Quantum Dots for Photovoltaics and Photocatalysis: A Review. ACS Applied Nano Materials 2022, 5 (10), 14092-14132.
(14) Hou, S.; Guo, Y.; Tang, Y.; Quan, Q. Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles. ACS Applied Materials & Interfaces 2017, 9 (22), 18417-18422.
(15) He, X.; Qiu, Y.; Yang, S. Fully-Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials. Advanced Materials 2017, 29 (32), 1700775.
(16) Yang, S.; Zhang, F.; Tai, J.; Li, Y.; Yang, Y.; Wang, H.; Zhang, J.; Xie, Z.; Xu, B.; Zhong, H.; et al. A Detour Strategy for Colloidally Stable Block-Copolymer Grafted Mapbbr3 Quantum Dots in Water with Long Photoluminescence Lifetime. Nanoscale 2018, 10 (13), 5820-5826.
(17) Zhao, Y.; Zhu, K. Organic–Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chemical Society Reviews 2016, 45 (3), 655-689.
(18) Li, H.; Wang, X.; Xu, J.; Zhang, Q.; Bando, Y.; Golberg, D.; Ma, Y.; Zhai, T. One-Dimensional Cds Nanostructures: A Promising Candidate for Optoelectronics. Advanced Materials 2013, 25 (22), 3017-3037.
(19) Masood, M. T. Solution-Processable Compact and Mesoporous Titanium Dioxide Thin Films as Electron-Selective Layers for Perovskite Solar Cells. 2020.
(20) Song, J.; Kulinich, S. A.; Li, J.; Liu, Y.; Zeng, H. A General One-Pot Strategy for the Synthesis of High-Performance Transparent-Conducting-Oxide Nanocrystal Inks for All-Solution-Processed Devices. Angewandte Chemie International Edition 2015, 54 (2), 462-466.
(21) Hintermayr, V. A.; Richter, A. F.; Ehrat, F.; Döblinger, M.; Vanderlinden, W.; Sichert, J. A.; Tong, Y.; Polavarapu, L.; Feldmann, J.; Urban, A. S. Tuning the Optical Properties of Perovskite Nanoplatelets through Composition and Thickness by Ligand-Assisted Exfoliation. Advanced Materials 2016, 28 (43), 9478-9485.
(22) Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P.; Alivisatos, A. P. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society 2015, 137 (51), 16008-16011.
(23) Yu, Y.; Xia, J.; Liang, Y. Basic Understanding of Perovskite Solar Cells and Passivation Mechanism. AIP Advances 2022, 12(5), 055307.
(24) Ünlü, F.; Jung, E.; Haddad, J.; Kulkarni, A.; Öz, S.; Choi, H.; Fischer, T.; Chakraborty, S.; Kirchartz, T.; Mathur, S. Understanding the Interplay of Stability and Efficiency in a-Site Engineered Lead Halide Perovskites. APL Materials 2020, 8 (7), 070901.
(25) Zhang, D.; Eaton, S. W.; Yu, Y.; Dou, L.; Yang, P. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society 2015, 137 (29), 9230-9233.
(26) Wikipedia contributors, c. Bibliographic Details for "Perovskite (Structure)". Wikipedia, The Free Encyclopedia., 15 April 2024 13:04 UTC. https://en.wikipedia.org/w/index.php?title=Perovskite_(structure)&oldid=1219050513 (accessed.
(27) Brivio, F.; Frost, J. M.; Skelton, J. M.; Jackson, A. J.; Weber, O. J.; Weller, M. T.; Goñi, A. R.; Leguy, A. M. A.; Barnes, P. R. F.; Walsh, A. Lattice Dynamics and Vibrational Spectra of the Orthorhombic, Tetragonal, and Cubic Phases of Methylammonium Lead Iodide. Physical Review B 2015, 92 (14), 144308.
(28) Zhang, L.; Sun, C.; He, T.; Jiang, Y.; Wei, J.; Huang, Y.; Yuan, M. High-Performance Quasi-2d Perovskite Light-Emitting Diodes: From Materials to Devices. Light: Science & Applications 2021, 10 (1), 61.
(29) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials 2016, 28 (1), 284-292.
(30) Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Science Advances 2019, 5 (2), eaav0693.
(31) Zhu, Z.; Sun, Q.; Zhang, Z.; Dai, J.; Xing, G.; Li, S.; Huang, X.; Huang, W. Metal Halide Perovskites: Stability and Sensing-Ability. Journal of Materials Chemistry C 2018, 6 (38), 10121-10137.
(32) Bozovic, I.; Schlom, D. Superconducting Thin Films: Materials, Preparation, and Properties. Encyclopedia of materials: science and technology 2001, 8955-8964.
(33) Wang, Y.; Sun, X.; Shivanna, R.; Yang, Y.; Chen, Z.; Guo, Y.; Wang, G.-C.; Wertz, E.; Deschler, F.; Cai, Z.; et al. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. Nano Letters 2016, 16 (12), 7974-7981.
(34) Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum Dot Induced Phase Stabilization of α-CsPbI3 Perovskite for High-Efficiency Photovoltaics. Science 2016, 354 (6308), 92-95.
(35) Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Advanced Materials 2015, 27 (44), 7162-7167.
(36) Saleem, M. I.; Katware, A.; Amin, A.; Jung, S.-H.; Lee, J.-H. YCl3-Substituted CsPbI3 Perovskite Nanorods for Efficient Red-Light-Emitting Diodes. Nanomaterials 2023, 13 (8), 1366.
(37) Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9 (4), 4533-4542.
(38) Zhao, Y. S.; Fu, H.; Peng, A.; Ma, Y.; Xiao, D.; Yao, J. Low-Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties. Advanced Materials 2008, 20 (15), 2859-2876.
(39) Tavakoli, M. M.; Gu, L.; Gao, Y.; Reckmeier, C.; He, J.; Rogach, A. L.; Yao, Y.; Fan, Z. Fabrication of Efficient Planar Perovskite Solar Cells Using a One-Step Chemical Vapor Deposition Method. Scientific Reports 2015, 5 (1), 14083.
(40) Luo, P.; Liu, Z.; Xia, W.; Yuan, C.; Cheng, J.; Lu, Y. A Simple in Situ Tubular Chemical Vapor Deposition Processing of Large-Scale Efficient Perovskite Solar Cells and the Research on Their Novel Roll-over Phenomenon in J–V Curves. Journal of Materials Chemistry A 2015, 3 (23), 12443-12451.
(41) Protesescu, L.; Yakunin, S.; Nazarenko, O.; Dirin, D. N.; Kovalenko, M. V. Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling. ACS Applied Nano Materials 2018, 1 (3), 1300-1308.
(42) Palazon, F.; El Ajjouri, Y.; Sebastia-Luna, P.; Lauciello, S.; Manna, L.; Bolink, H. J. Mechanochemical Synthesis of Inorganic Halide Perovskites: Evolution of Phase-Purity, Morphology, and Photoluminescence. Journal of Materials Chemistry C 2019, 7 (37), 11406-11410.
(43) Koolyk, M.; Amgar, D.; Aharon, S.; Etgar, L. Kinetics of Cesium Lead Halide Perovskite Nanoparticle Growth; Focusing and De-Focusing of Size Distribution. Nanoscale 2016, 8 (12), 6403-6409.
(44) Chang, Y.-H.; Ku, C.-W.; Zhang, Y.-H.; Wang, H.-C.; Chen, J.-Y. Ultrafast Responsive Non-Volatile Flash Photomemory Via Spatially Addressable Perovskite/Block Copolymer Composite Film. Advanced Functional Materials 2020, 30 (21), 2000764.
(45) Kim, S.; Lee, H.; Han, H.; Park, Y.; Lee, K.; Kim, Y.; Zan, G.; Lee, J.; Kim, D.; Kim, J.; et al. Phase-Purified Ruddlesden–Popper Perovskites Vertically Oriented in Block Copolymer Nanostructures for Environmentally Stable Light Conversion and Charge Trapping. Advanced Optical Materials 2023, 11 (16), 2300053.
(46) Aranda, C. A.; Caliò, L.; Salado, M. Toward Commercialization of Stable Devices: An Overview on Encapsulation of Hybrid Organic-Inorganic Perovskite Solar Cells. Crystals 2021, 11 (5), 519.
(47) Zhang, X.; Chen, X.; Chen, Y.; Nadege Ouedraogo, N. A.; Li, J.; Bao, X.; Han, C. B.; Shirai, Y.; Zhang, Y.; Yan, H. Rapid Degradation Behavior of Encapsulated Perovskite Solar Cells under Light, Bias Voltage or Heat Fields. Nanoscale Advances 2021, 3 (21), 6128-6137.
(48) Kore, B. P.; Jamshidi, M.; Gardner, J. M. The Impact of Moisture on the Stability and Degradation of Perovskites in Solar Cells. Materials Advances 2024, 5 (6), 2200-2217.
(49) Li, C.; Rafique, S.; Zhan, Y. Synergy of Block Copolymers and Perovskites: Template Growth through Self-Assembly. The Journal of Physical Chemistry Letters 2022, 13 (50), 11610-11621.
(50) Ding, Y.; Gadelrab, K. R.; Mizrahi Rodriguez, K.; Huang, H.; Ross, C. A.; Alexander-Katz, A. Emergent Symmetries in Block Copolymer Epitaxy. Nature Communications 2019, 10 (1), 2974.
(51) Park, C.; Yoon, J.; Thomas, E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns. Polymer 2003, 44 (22), 6725-6760.
(52) Sharma, D.; Lipp, L.; Arora, S.; Singh, J. Chapter 13 - Diblock and Triblock Copolymers of Polylactide and Polyglycolide. Materials for Biomedical Engineering. Elsevier, 2019, 449-477.
(53) Bates, F. S.; Fredrickson, G. H. Block Copolymers—Designer Soft Materials. Physics Today 1999, 52 (2), 32-38.
(54) Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29 (4), 1091-1098.
(55) Watanabe, K.; Katsuhara, S.; Mamiya, H.; Kawamura, Y.; Yamamoto, T.; Tajima, K.; Isono, T.; Satoh, T. Highly Asymmetric Lamellar Nanostructures from Nanoparticle–Linear Hybrid Block Copolymers. Nanoscale 2020, 12 (31), 16526-16534.
(56) Kim, M. P.; Yi, G.-R. Nanostructured Colloidal Particles by Confined Self-Assembly of Block Copolymers in Evaporative Droplets. Frontiers in Materials 2015, 2, 45.
(57) Shin, J. J. Morphological Evolution of Hybrid Block Copolymer Particles: Toward Magnetic Responsive Particles. Polymers 2023, 15 (18), 3689.
(58) Hanafy, N. A. N.; El-Kemary, M.; Leporatti, S. Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy. Cancers 2018, 10 (7), 238.
(59) Ahmed, E. Breaking Down” Surfactants: What They Are, How They Work, and Their Role in the Pandemic. In Dispersa, 2020; Vol. 2024.
(60) Thomas, A. Micelle Formation. https://www.mpikg.mpg.de/864498/MicelleFormation.pdf (accessed 2024 May, 24th).
(61) Salim, M.; Minamikawa, H.; Sugimura, A.; Hashim, R. Amphiphilic Designer Nano-Carriers for Controlled Release: From Drug Delivery to Diagnostics. MedChemComm 2014, 5 (11), 1602-1618.
(62) Kumar, L.; Singh, S.; Horechyy, A.; Fery, A.; Nandan, B. Block Copolymer Template-Directed Catalytic Systems: Recent Progress and Perspectives. Membranes 2021, 11 (5), 318.
(63) Yu, H.; Jiao, Y.; Li, N.; Pang, J.; Li, W.; Zhang, X.; Li, X.; Li, C. Au-CeO2 Janus-Like Nanoparticles Fabricated by Block Copolymer Templates and Their Catalytic Activity in the Degradation of Methyl Orange. Applied Surface Science 2018, 427, 771-778.
(64) Kollmetz, T.; Monteiro A, I.; Gerrard, J. A.; Malmström, J. Polystyrene-Block-Poly(Ethylene Oxide) Thin Films Fabricated from a Solvent Mixture for the Co-Assembly of Polymers and Proteins. ACS Omega 2020, 5 (41), 26365-26373.
(65) Casas, M. T.; Michell, R. M.; Blaszczyk-Lezak, I.; Puiggalí, J.; Mijangos, C.; Lorenzo, A. T.; Müller, A. J. Self-Assembly of Semicrystalline Pe-B-Ps Diblock Copolymers within Aao Nanoporous Templates. Polymer 2015, 70, 282-289.
(66) Septani, C. M.; Ku, M.-F.; Chen, C.-Y.; Lin, J.-M.; Sun, Y.-S. Micellization, Aggregation, and Gelation of Polystyrene-Block-Poly(Ethylene Oxide) in Cosolvents Added with Hydrochloric Acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 652, 129857.
(67) Septani, C. M.; Shih, O.; Yeh, Y.-Q.; Sun, Y.-S. Structural Evolution of a Polystyrene-Block-Poly(Ethylene Oxide) Block Copolymer in Tetrahydrofuran/Water Cosolvents. Langmuir 2022, 38 (19), 5987-5995.
(68) Hammouda, B.; Ho, D. L.; Kline, S. Insight into Clustering in Poly(Ethylene Oxide) Solutions. Macromolecules 2004, 37 (18), 6932-6937.
(69) Yeh, S.W.; Wei, K.H.; Sun, Y.S.; Jeng, U. S.; Liang, K. S. Morphological Transformation of Ps-B-Peo Diblock Copolymer by Selectively Dispersed Colloidal Cds Quantum Dots. Macromolecules 2003, 36 (21), 7903-7907.
(70) Liu, D.G.; Chang, C.H.; Chiang, L.C.; Lee, M.H.; Chang, C.F.; Lin, C.Y.; Liang, C.C.; Lee, T.H.; Lin, S.W.; Liu, C.Y.; et al. Optical Design and Performance of the Biological Small-Angle X-Ray Scattering Beamline at the Taiwan Photon Source. Journal of Synchrotron Radiation 2021, 28 (6), 1954-1965.
(71) Li, J.; Jiao, A.; Chen, S.; Wu, Z.; Xu, E.; Jin, Z. Retracted: Application of the Small-Angle X-Ray Scattering Technique for Structural Analysis Studies: A Review. Journal of Molecular Structure 2018, 1165, 391-400.
(72) Mao, H.; Li, H.; Shang, Y.; Li, J.; Lu, C.; An, L.; Jiang, S. Solvent Vapor Induced Structural Evolution of Micelle Clusters and Square Slices That Form in PS-b-PEO Solutions. Journal of Polymer Research 2012, 19 (11), 11.
(73) Miles, R. B.; Lempert, W. R.; Forkey, J. N. Laser Rayleigh Scattering. Measurement Science and Technology 2001, 12 (5), R33-R51.
(74) Dowling, J. J. Scattering of Polarized Light by a Colloidal Graphite Solution. Nature 1946, 157 (3996), 734-735.
(75) Iwuozor Kingsley, O. Properties and Uses of Colloids: A Review. Colloid and Surface Science 2019, 4 (2), 24-28.
(76) CM, H. Hansen Solubility Parameters: A User’s Handbook. Florida: CRC 2007.
(77) Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering 2020, 6 (4), 468-482.
(78) Gelot, A.; Friesen, W.; Hamza, H. A. Emulsification of Oil and Water in the Presence of Finely Divided Solids and Surface-Active Agents. Colloids and Surfaces 1984, 12, 271-303.
(79) Tambe, D. E.; Sharma, M. M. Factors Controlling the Stability of Colloid-Stabilized Emulsions: I. An Experimental Investigation. Journal of Colloid and Interface Science 1993, 157 (1), 244-253.
(80) Chen, C.-Y.; Zhang, F.-H.; Huang, J.; Xue, T.; Wang, X.; Zheng, C.-F.; Wang, H.; Jia, C.-L. Polymer Poly (Ethylene Oxide) Additive for High-Stability All-Inorganic CsPbI3−XBrx Perovskite Solar Cells. Energies 2023, 16 (23), 7849.
(81) Nabiyan, A.; Biehl, P.; Schacher, F. H. Crystallization Vs Metal Chelation: Solution Self-Assembly of Dual Responsive Block Copolymers. Macromolecules 2020, 53 (13), 5056-5067.
(82) Nah, Y.; Jang, D.; Kim, D. H. Block Copolymer Micelles Enable Facile Synthesis of Organic–Inorganic Perovskite Nanostructures with Tailored Architecture. Chemical Communications 2021, 57 (15), 1879-1882.
(83) Konishi, T.; Okamoto, D.; Tadokoro, D.; Kawahara, Y.; Fukao, K.; Miyamoto, Y. Origin of Saxs Intensity in the Low-q Region During the Early Stage of Polymer Crystallization from Both the Melt and Glassy State. Physical Review Materials 2018, 2 (10), 105602.
(84) Jurado, J. F.; Hernández, C. V.; Vargas, R. A. Preparation of Zinc Oxide and Poly-Ethylene Oxide Composite Membranes and Their Phase Relationship. Dyna 2012, 79, 79-85.
(85) Kolahgar-Azari, S.; Kagkoura, A.; Mamalis, D.; Blackford, J. R.; Valluri, P.; Sefiane, K.; Koutsos, V. Semicrystalline Polymer Micro/Nanostructures Formed by Droplet Evaporation of Aqueous Poly(Ethylene Oxide) Solutions: Effect of Solution Concentration. Langmuir 2022, 38 (49), 15063-15076.
(86) Brigham, N.; Nardi, C.; Carandang, A.; Allen, K.; Van Horn, R. M. Manipulation of Crystallization Sequence in PEO-b-PCl Films Using Solvent Interactions. Macromolecules 2017, 50 (22), 8996-9007.
(87) Lim, S.-H.; Lee, T.; Oh, Y.; Narayanan, T.; Sung, B. J.; Choi, S.-M. Hierarchically Self-Assembled Hexagonal Honeycomb and Kagome Superlattices of Binary 1D Colloids. Nature Communications 2017, 8 (1), 360.
(88) de Castro, R. D.; Casadei, B. R.; Santana, B. V.; Lotierzo, M.; de Oliveira, N. F.; Malheiros, B.; Mariani, P.; Kaminski, R. C. K.; Barbosa, L. R. S. Scrypta: a Web-Based Platform for Analyzing Small-Angle Scattering Curves of Lyotropic Liquid Crystals. bioRxiv 2019, 791848.
(89) Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. Expo2013: A Kit of Tools for Phasing Crystal Structures from Powder Data. Journal of Applied Crystallography 2013, 46 (4), 1231-1235.
(90) Hsu, N.W.; Nouri, B.; Chen, L.T.; Chen, H.L. Hexagonal Close-Packed Sphere Phase of Conformationally Symmetric Block Copolymer. Macromolecules 2020, 53 (21), 9665-9675.
(91) Momma, K.; Izumi, F. Vesta 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. Journal of Applied Crystallography 2011, 44 (6), 1272-1276.
(92) Grisorio, R.; Conelli, D.; Fanizza, E.; Striccoli, M.; Altamura, D.; Giannini, C.; Allegretta, I.; Terzano, R.; Irimia-Vladu, M.; Margiotta, N.; et al. Size-Tunable and Stable Cesium Lead-Bromide Perovskite Nanocubes with near-Unity Photoluminescence Quantum Yield. Nanoscale Advances 2021, 3 (13), 3918-3928.
(93) Jones, A. R.; Aikens, D. A. The Nature of Pb(II)-Bromide Complexes in Propylene Carbonate. Polyhedron 1982, 1 (2), 169-174.
(94) Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites. The Journal of Physical Chemistry Letters 2016, 7 (7), 1368-1373.
(95) González-Carrero, S.; Galian, R. E.; Pérez-Prieto, J. Organometal Halide Perovskites: Bulk Low-Dimension Materials and Nanoparticles. Particle & Particle Systems Characterization 2015, 32 (7), 709-720.
(96) Fu, L.; Li, H.; Wang, L.; Yin, R.; Li, B.; Yin, L. Defect Passivation Strategies in Perovskites for an Enhanced Photovoltaic Performance. Energy & Environmental Science 2020, 13 (11), 4017-4056.
(97) Croker, M. N.; Fidler, R. S.; Smith, R. W.; Raynor, G. V. The Characterization of Eutectic Structures. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1973, 335 (1600), 15-37.
(98) Tong, Z.; Wang, W.; Zeng, S.; Sun, Y.; Meng, J.; Liu, Y.; Xia, Q.; Yu, H. Hydrogen Bond Reconstruction Strategy for Eutectic Solvents That Realizes Room-Temperature Dissolution of Cellulose. Green Chemistry 2022, 24 (22), 8760-8769.
(99) Wang, K.; Zheng, L.; Zhu, T.; Liu, L.; Becker, M. L.; Gong, X. High Performance Perovskites Solar Cells by Hybrid Perovskites Co-Crystallized with Poly(Ethylene Oxide). Nano Energy 2020, 67, 104229.
(100) Wang, L.; Liu, H.; Zhang, Y.; Mohammed, O. F. Photoluminescence Origin of Zero-Dimensional Cs4PbBr6 Perovskite. ACS Energy Letters 2020, 5 (1), 87-99.
(101) Cao, Q.; Yang, J.; Wang, T.; Li, Y.; Pu, X.; Zhao, J.; Zhang, Y.; Zhou, H.; Li, X.; Li, X. Star-Polymer Multidentate-Cross-Linking Strategy for Superior Operational Stability of Inverted Perovskite Solar Cells at High Efficiency. Energy & Environmental Science 2021, 14 (10), 5406-5415.
(102) You, S.; Zeng, H.; Ku, Z.; Wang, X.; Wang, Z.; Rong, Y.; Zhao, Y.; Zheng, X.; Luo, L.; Li, L.; et al. Multifunctional Polymer-Regulated SnO2 Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials 2020, 32 (43), 2003990.
(103) Xu, Y.; Liu, G.; Hu, J.; Wang, G.; Chen, M.; Chen, Y.; Li, M.; Zhang, H.; Chen, Y. In Situ Polymer Network in Perovskite Solar Cells Enabled Superior Moisture and Thermal Resistance. The Journal of Physical Chemistry Letters 2022, 13 (16), 3754-3762.
(104) Guo, W.; Chen, N.; Xu, B.; Lu, Y.; Li, B.; Wu, T.; Cheng, Q.; Li, Y.; Chen, J.; Lin, Y.; et al. Stability of Hybrid Organic-Inorganic Perovskite CH3NH3PbBr3 Nanocrystals under Co-Stresses of UV Light Illumination and Temperature. Nanomaterials 2019, 9 (8), 1158.
(105) Sharma, S. K.; Phadnis, C.; Das, T. K.; Kumar, A.; Kavaipatti, B.; Chowdhury, A.; Yella, A. Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to Stable Solar Cells. Chemistry of Materials 2019, 31 (9), 3111-3117.
校內:2026-07-23公開