簡易檢索 / 詳目顯示

研究生: 李啓民
Lee, Chi-Ming
論文名稱: 利用台灣GNSS測站之訊噪比資料推求沿岸海水面變化
Coastal Sea Level Variations Derived from GNSS SNR Data - A Case Study in Taiwan
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 89
中文關鍵詞: GNSS驗潮站海水面變化訊噪比資料
外文關鍵詞: GNSS-based tide gauges, Sea level variations, SNR
相關次數: 點閱:140下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球海水面上升衍生出許多嚴重的問題,例如危及居住於沿海低窪地區人們的生命財產安全,因此瞭解及監測沿岸海水面變化成為一重要的課題。本研究使用全球導航衛星系統(Global Navigation Satellite System, GNSS)之訊噪比(Signal-to-Noise Ratio, SNR)資料,透過Lomb Scargle Periodogram (LSP)法、調和分析輔助LSP法以及最小二乘平差反演法分別推求臺灣高雄港、蘇澳港、中央大學臨海工作站(TaiCOAST)及瑞典Onsala Space Observatory (OSO)海水面高度,推求之海水面變化會進一步與鄰近或共站潮位站之海水面變化比較並進行精度評估。結果顯示,利用高雄港和蘇港港之GNSS SNR資料所推求的海水面變化與傳統驗潮站觀測有良好的一致性,其差值之標準偏差介於7.1 -11.1公分,相關係數為0.94-0.97,而兩GNSS驗潮站皆可提供超過80%的有效海水面高度觀測量。利用高雄港2006-2011期間之地表垂直變動速率及相對海水面變化趨勢可求得絕對海水面變化趨勢為 mm/yr,與衛星測高所求得趨勢 mm/yr相吻合。然而,由於高雄港數據所涵蓋時間較短(5年),導致所求之最佳估值與不確定性幾乎為同一量級,故此比較成果較不顯著。相較之下,中央大學臨海工作站僅能提供40%的有效海水面觀測量,與驗潮站觀測量差異之標準偏差高達1.12公尺,相關係數僅0.13。精度差的原因為該地區在退潮時,所接收之反射訊號大多來自潮間帶,導致該站監測海水面變化能力欠佳。瑞典之GNSS驗潮站利用LSP及最小二乘平差法皆可提供90%以上的有效海水面觀測量。其中,利用最小二乘平差反演法所推求之海水面變化精度可提升約2公分,相關係數亦從0.91增加至0.97。綜合以上結果,臺灣地區除了中央大學臨海工作站外,高雄港和蘇澳港之GNSS測站皆展現監測沿岸海水面變化之潛力。

    Global sea level rise (SLR) has caused many kinds of disasters, damaging the lives and properties of numerous human beings, especially in low-lying coastal regions. Therefore, understanding and monitoring coastal sea level variations are of great importance for human society. This research used Global Navigation Satellite System (GNSS) signal-to-noise ratio (SNR) data from the GNSS stations located in Taiwan (Kaohsiung, Suao and TaiCOAST) and Sweden (Onsala Space Observatory, OSO) to compute sea level heights (SLH) by using three different methods, including Lomb Scargle Periodogram (LSP) aided with tidal harmonic analysis, LSP-only and inverse modeling (IM). The GNSS-derived sea level variations are compared with those from co-located or nearby traditional tide gauges. In Taiwan, the GNSS-derived sea level variations in Kaohsiung and Suao show good agreement with those from tide gauges with the standard deviations (STDs) of differences ranging from 7.1 - 11.1 cm and the correlation coefficients of 0.94-0.97. In addition, more than 80 % of SLH can be successfully achieved during the SNR available periods. Besides, the absolute sea level trend in Kaohsiung during 2006-2011 calculated by combining the vertical motion and the relative sea level from GNSS, is mm/yr, which agrees with that derived from satellite altimetry of mm/yr. However, this comparison is not robust because the uncertainty is almost the same level with the estimate, resulting from the short time coverage of data. In contrast, merely 40 % of SLH can be successfully provided by TaiCOAST and the STD of differences between GNSS-derived and tide gauge sea level changes is 1.12 m with a correlation coefficient of 0.13. TaiCOAST has poor performance for monitoring sea level changes since the GNSS signals may be reflected from intertidal zone when sea level ebbs. On the other hand, the GNSS-based tide gauge in Sweden can offer over 90 % of SLH by both LSP and IM methods. The STD of differences between sea level changes derived from GNSS SNR by IM and the tide gauge decreases about 2 cm compared with that by LSP and the correlation coefficient increases from 0.91 to 0.97. From the bottom line, the GNSS stations in Taiwan except for TaiCOAST demonstrate the potential of serving as GNSS-based tide gauges to measure sea level changes like a specially designed one (e.g. OSO) does.

    摘要 I ABSTRACT II 誌謝 IV Table of Contents V List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Outline 8 Chapter 2 GNSS Reflectometry 9 2.1 Introduction of GNSS 9 2.1.1 GNSS Architecture 9 2.1.2 Global Positioning System (GPS) 10 2.2 Reflected GNSS Signals 11 2.2.1 Signal Polarization 11 2.2.2 Reflecting Surface – Fresnel Zone 16 2.3 GNSS-based Tide Gauge 19 2.3.1 Type I – Phase-Delay Analysis 20 2.3.2 Type II – SNR Analysis 22 Chapter 3 Methodology 23 3.1 Flowchart 23 3.2 GNSS SNR Analysis 25 3.3 Spectral analysis aided with Tidal Harmonic Analysis 29 3.3.1 Lomb Scargle Periodogram 29 3.3.1.1 Periodogram 29 3.3.1.2 Statistics of the Periodogram 30 3.3.1.3 Important Factors of LSP 31 3.3.2 Tidal Harmonic Analysis 32 3.4 Inverse Modeling 34 3.4.1 Fitting Sea Level Heights through B-spline 35 3.4.2 Parameters Estimation by Least Squares Method (LSM) 38 Chapter 4 Results and Discussion 40 4.1 Experimental Areas and Data 40 4.1.1 Experimental Areas 40 4.1.2 Collected Data 41 4.2 GNSS SNR Data at Kaohsiung Harbor 42 4.2.1 Sea Level Heights Retrieval at Kaohsiung harbor 49 4.2.1.1 Short-term result (2009/05/01-2009/05/31) 49 4.2.1.2 Long-term result (2006/03/01-2011/07/31) 51 4.3 GNSS SNR Data at Suao Harbor 58 4.3.1 Sea Level Heights Retrieval at Suao harbor 61 4.4 GNSS SNR Data at TaiCOAST 65 4.4.1 Sea Level Heights Retrieval at TaiCOAST 69 4.5 GNSS SNR Data at Onsala 72 4.5.1 Inverse Modeling result 74 4.5.2 Sea Level Heights Retrieval at Onsala 75 Chapter 5 Conclusions and Recommendations 79 REFERENCE 82

    姜介中. (2009). 利用驗潮紀錄估計臺灣沿岸地表垂直運動. 臺灣大學海洋研究所學位論文, 1-88.
    Anderson, K. D. (2000). Determination of water level and tides using interferometric observations of GPS signals. Journal of Atmospheric and Oceanic Technology, 17(8), 1118-1127.
    Benton, C. J., & Mitchell, C. N. (2011). Isolating the multipath component in GNSS signal-to-noise data and locating reflecting objects. Radio Science, 46(06), 1-11.
    Bézier, P. E. (1972). Numerical control in automobile design and manufacture of curved surfaces. Curved Surfaces in Engineering, Ed. LJI Browne, IPC Science and Technology Press, Guildford, 44-48.
    Bilich, A., & Larson, K. M. (2007). Correction published 29 March 2008: Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(06), 1-16.
    Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. Journal of Geophysical Research: Solid Earth, 113(B4).
    Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., ... & Shum, C. K. (2007). Observations: Oceanic Climate Change and Sea Level. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovenmental Panel on Climate Change, 358-432.
    Brewster, D. (1815). On the laws which regulate the polarisation of light by reflexion from transparent bodies. Philosophical Transactions of the Royal Society of London, 105, 125-159.
    Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L. L., & Callahan, P. S. (2001). Satellite altimetry. International geophysics, 69, 1-ii.
    Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4-5), 585-602.
    de Boor, C. (1978). A practical guide to splines. New York, NY: Springer.
    Deng, X., Featherstone, W. E., Hwang, C., & Berry, P. A. M. (2002). Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4), 249-271.
    Fish, M. R., Cote, I. M., Gill, J. A., Jones, A. P., Renshoff, S., & Watkinson, A. R. (2005). Predicting the impact of sea‐level rise on Caribbean Sea turtle nesting habitat. Conservation biology, 19(2), 482-491.
    Fitzgerald, D. M., Fenster, M. S., Argow, B. A., & Buynevich, I. V. (2008). Coastal Impacts Due to Sea-Level Rise. Annual Review of Earth and Planetary Sciences, 36, 601-647.
    Fuentes, M. M. P. B., Limpus, C. J., Hamann, M., & Dawson, J. (2010). Potential impacts of projected sea‐level rise on sea turtle rookeries. Aquatic conservation: marine and freshwater ecosystems, 20(2), 132-139.
    Hamlington, B. D., Thompson, P., Hammond, W. C., Blewitt, G., & Ray, R. D. (2016). Assessing the impact of vertical land motion on twentieth century global mean sea level estimates. Journal of Geophysical Research: Oceans, 121(7), 4980-4993.
    Hannah, B. M. (2001). Modelling and simulation of GPS multipath propagation (Doctoral dissertation, Queensland University of Technology).
    Hobiger, T., Haas, R., & Löfgren, J. S. (2014). GLONASS‐R: GNSS reflectometry with a Frequency Division Multiple Access‐based satellite navigation system. Radio Science, 49(4), 271-282.
    Hobiger, T., Haas, R., & Löfgren, J. (2016). Software-defined radio direct correlation GNSS reflectometry by means of GLONASS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4834-4842.
    Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Australia: Springer Science & Business Media.
    IOC (Intergovernmental Oceanographic Commission of UNESCO), (2006), Manual on Sea-level Measurements and Interpretation, Volume IV: An update to 2006, IOC Manuals and Guides No.14, vol. IV, JCOMM Technical Report No.31; WMO/TD. No.1339, 78 pp, Paris.
    IPCC. (2007). Climate Change 2007: The Physical Science Basis. (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change).
    IPCC. (2013). Climate Change 2013: The Physical Science Basis. (Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge).
    ITU (International Telecommunication Union). (1992). Electrical Characteristics of the Surface of the Earth, Recommendation ITU-R P.527-3, ITU Radiocommunication Assembly
    Jacobson, M. D. (2010). Snow-covered lake ice in GPS multipath reception–Theory and measurement. Advances in Space Research, 46(2), 221-227.
    Jeffrey, C. (2015). An introduction to GNSS: GPS, GLONASS, Galileo and other global navigation satellite systems. Calgary, Alberta, Canada: NovAtel Inc.
    Jin, S., & Najibi, N. (2014). Sensing snow height and surface temperature variations in Greenland from GPS reflected signals. Advances in Space Research, 53(11), 1623-1633.
    Johansson, J. M., Davis, J. L., Scherneck, H. G., Milne, G. A., Vermeer, M., Mitrovica, J. X., & Koivula, H. (2002). Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research: Solid Earth, 107(B8).
    Kaplan, E., & Hegarty, C. (2005). Understanding GPS: principles and applications. Norwood, MA: Artech house.
    Kierulf, H. P., Plag, H. P., Bingley, R. M., Teferle, N., Demir, C., Cingoz, A., ... & Zdunek, R. (2008). Comparison of GPS analysis strategies for high-accuracy vertical land motion. Physics and Chemistry of the Earth, Parts A/B/C, 33(3), 194-204.
    Klein, R. J., & Nicholls, R. J. (1999). Assessment of coastal vulnerability to climate change. Ambio, 28(2), 182-187.
    LaFever, D. H., Lopez, R. R., Feagin, R. A., & Silvy, N. J. (2007). Predicting the impacts of future sea-level rise on an endangered lagomorph. Environmental Management, 40(3), 430-437.
    Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P., & Braun, J. (2008). Using GPS multipath to measure soil moisture fluctuations: initial results. GPS solutions, 12(3), 173-177.
    Larson, K. M., Gutmann, E. D., Zavorotny, V. U., Braun, J. J., Williams, M. W., & Nievinski, F. G. (2009). Can we measure snow depth with GPS receivers?. Geophysical Research Letters, 36(17).
    Larson, K. M., Löfgren, J. S., & Haas, R. (2012). Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301-1310.
    Larson, K. M., Ray, R. D., Nievinski, F. G., & Freymueller, J. T. (2013). The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10(5), 1200-1204.
    Larson, K. M., & Small, E. E. (2014). GPS ground networks for water cycle sensing. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp. 3822-3825). IEEE.
    Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS Satellite Surveying. New Jersey, NJ: John Wiley & Sons.
    Llovel, W., Guinehut, S., & Cazenave, A. (2010). Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dynamics, 60(5), 1193-1204.
    Löfgren, J. S., Haas, R., & Johansson, J. M. (2011a). Monitoring coastal sea level using reflected GNSS signals. Advances in Space Research, 47(2), 213-220.
    Löfgren, J. S., Haas, R., Scherneck, H. G., & Bos, M. S. (2011b). Three months of local sea level derived from reflected GNSS signals. Radio Science, 46, RS0C05.
    Löfgren, J. (2014a). Local sea level observations using reflected GNSS signals. Chalmers University of Technology.
    Löfgren, J. S., Haas, R., & Scherneck, H. G. (2014b). Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. Journal of Geodynamics, 80, 66-80.
    Löfgren, J. S., & Haas, R. (2014). Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP Journal on Advances in Signal Processing, 2014(1), 50.
    Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39(2), 447-462.
    Lowe, S. T., Zuffada, C., Chao, Y., Kroger, P., Young, L. E., & LaBrecque, J. L. (2002). 5‐cm‐Precision aircraft ocean altimetry using GPS reflections. Geophysical Research Letters, 29(10), 13-1-13-4.
    Martin-Neira, M. (1993). A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA journal, 17(4), 331-355.
    Martin-Neira, M., Colmenarejo, P., Ruffini, G., & Serra, C. (2002). Altimetry precision of 1 cm over a pond using the wide-lane carrier phase of GPS reflected signals. Canadian Journal of Remote Sensing, 28(3), 394-403.
    Masters, D., Axelrad, P., & Katzberg, S. (2004). Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sensing of Environment, 92(4), 507-520.
    Míguez, B. M., Testut, L., & Wöppelmann, G. (2012). Performance of modern tide gauges: towards mm-level accuracy. Scientia Marina, 76(S1), 221-228.
    Mimura, N. (2013). Sea-level rise caused by climate change and its implications for society. Proceedings of the Japan Academy, Series B, 89(7), 281-301.
    Nelson, K. L., & Wickwar, V. B. (2005). Detection of tidal and planetary waves in nighttime lidar data: Technique and application to winter mesospheric temperatures above Logan, Utah. J. Geophys. Res.:(submitted).
    Nievinski, F. G. (2013). Forward and inverse modeling of GPS multipath for snow monitoring (Doctoral dissertation, University of Colorado at Boulder).
    Nievinski, F. G., & Larson, K. M. (2014a). Inverse modeling of GPS multipath for snow depth estimation—Part I: Formulation and simulations. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6555-6563.
    Nievinski, F. G., & Larson, K. M. (2014b). Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6564-6573.
    Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937.
    Prautzsch, H., Boehm, W., & Paluszny, M. (2002). Bezier and B-spline techniques (pp. 239-258). Berlin Heidelberg: Springer.
    Press, W. H. (1992). The art of scientific computing. Cambridge university press.
    Rees, W. G. (2013). Physical principles of remote sensing. Cambridge University Press.
    Reinking, J. (2016). GNSS-SNR water level estimation using global optimization based on interval analysis. Journal of Geodetic Science, 6(1), 80-92.
    Rivas, M. B., & Martin-Neira, M. (2006). Coherent GPS reflections from the sea surface. IEEE geoscience and remote sensing letters, 3(1), 28-31.
    Roussel, N., Ramillien, G., Frappart, F., Darrozes, J., Gay, A., Biancale, R., & Allain, D. (2015). Sea level monitoring and sea state estimate using a single geodetic receiver. Remote sensing of Environment, 171, 261-277.
    Santamaría-Gómez, A., & Watson, C. (2017). Remote leveling of tide gauges using GNSS reflectometry: case study at Spring Bay, Australia. GPS solutions, 21(2), 451-459.
    Scargle, J. D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263, 835-853.
    Scherneck, H. G., Johansson, J. M., Elgered, G., Davis, J. L., Jonsson, B., Hedling, G., & Mitrovica, J. X. (2002). Bifrost: Observing the Three‐Dimensional Deformation of Fennoscandia. Ice Sheets, Sea Level and the Dynamic Earth, 69-93.
    Schöne, T., Schön, N., & Thaller, D. (2009). IGS tide gauge benchmark monitoring pilot project (TIGA): scientific benefits. Journal of Geodesy, 83(3), 249-261.
    Schwartz, M. (Ed.). (2006). Encyclopedia of coastal science. Netherlands: Springer Science & Business Media.
    Seeber, G. (1993). Satellite Geodesy: Foundations, Methods and Aplications. New York, NY: Walter de Gruyter.
    Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S., & Dokka, R. K. (2007). Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophysical Research Letters, 34(2).
    Semmling, A. M., Beyerle, G., Stosius, R., Dick, G., Wickert, J., Fabra, F., & Yudanov, S. B. (2011). Detection of Arctic Ocean tides using interferometric GNSS‐R signals. Geophysical Research Letters, 38(4).
    Shum, C. K., Ries, J. C., & Tapley, B. D. (1995). The accuracy and applications of satellite altimetry. Geophysical Journal International, 121(2), 321-336.
    Small, C., & Nicholls, R. J. (2003). A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19(3), 584-599.
    Strandberg, J., Hobiger, T., & Haas, R. (2016). Improving GNSS‐R sea level determination through inverse modeling of SNR data. Radio Science, 51(8), 1286-1296.
    Teferle, F. N., Williams, S. D., Kierulf, H. P., Bingley, R. M., & Plag, H. P. (2008). A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Physics and Chemistry of the Earth, Parts A/B/C, 33(3), 205-216.
    Vagle, N., Broumandan, A., Jafarnia-Jahromi, A., & Lachapelle, G. (2016). Performance analysis of GNSS multipath mitigation using antenna arrays. The Journal of Global Positioning Systems, 1(14), 1-15.
    Watkins, K., C. Ugaz, L. Carvajal, D. Coppard, R. F. Nieva, A. Gaye, … P. Seck, (2007), Human Development Report 2007/2008 - Fighting climate change: Human solidarity in a divided world. New York, NY: United Nations Development Programme (UNDP)
    Wu, Y. F., Wu, C. H., Lai, D. Y., & Chen, F. C. (2007). A reconfigurable quadri-polarization diversity aperture-coupled patch antenna. IEEE Transactions on Antennas and Propagation, 55(3), 1009-1012.
    Zavorotny, V. U., & Voronovich, A. G. (2000). Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 951-964.

    下載圖示 校內:2020-07-25公開
    校外:2020-07-25公開
    QR CODE