簡易檢索 / 詳目顯示

研究生: 沈登凱
Shen, Deng-Kai
論文名稱: 台灣各地老榕樹親緣關係評估
The assessment of the phylogenetic relationship of the old banyan trees (Ficus microcarpa) in Taiwan
指導教授: 張松彬
Chang, Song-Bin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 58
中文關鍵詞: 榕樹微衛星分子標誌親緣關係人為分布
外文關鍵詞: Ficus microcarpa, microsatellite makers, phylogenetic relationship, artificial distribution
相關次數: 點閱:159下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 老樹是我們自然界中無形的資產,不僅有著重要的生物功能,同時也存在著許多重要的歷史意義。根據林務局對台灣老樹的調查當中,數量最多的老樹樹種為榕樹,多達1421棵。在台灣各地的老榕樹究竟是自然分布?還是有人為的影響? 在國立成功大學校園內,有多達150棵符合台南市老樹標準的珍貴老樹,所以本實驗希望以成大為老榕樹為一個特定區域老榕樹親緣關係的調查,再加上台灣各地區所取得的老榕樹樣本,透過遺傳分子標誌的技術,來探討台灣老榕樹間的親緣關係。微衛星序列是目前常用來建立物種親緣關係的分子標誌,本實驗利用已開發於榕屬植物的微衛星分子標誌(microsatellites),篩選出具有可擴增性且穩定度高的分子標誌,將其引子進行螢光標定,配合自動化核酸片段分析技術,以獲得各個樣本的基因型資訊。實驗結果顯示,其中有10個高度辨別的微衛星標記能夠有效地分辨各個樣本,並且以不加權平均重方式(Unweighted Pair Group Method with Arithmetic Mean, UPGMA)進行親緣關係圖分析,可將老榕樹分為兩組區域分布,分別位於台灣東北和西部。結果顯示人類的影響和自然屏障可能是老榕樹的基因流和遺傳分群結果的主要原因。本篇研究不僅幫助我們了解台灣老榕樹的遺傳親緣,也說明地理分布可能受人為的影響。未來若能在更多地區收集更多的樣品,可以更清楚地了解台灣老榕樹的遺傳親緣和地理分布的關係。

    Old trees are intangible assets in our nature, not only have important biological functions, but also there are many important historical significances. According to the old tree survey of Forestry Bureau Council of Agriculture, the most number of old trees in Taiwan is banyan tree (Ficus microcarpa), which is up to 1421. The old banyan trees in Taiwan are of a natural distribution or a human impact?
    In the National Cheng Kung University campuses, there are as many as 150 old banyan trees, which have reached the standard of precious old trees in Tainan City. It is hoped that through the technology of molecular genetic markers to verify the phylogenetic relationship among old banyan trees in Taiwan from the various regions including the campuses of National Cheng Kung University. Microsatellites are the common molecular markers used to establish a phylogenetic relationship of species. In this study, we used microsatellite markers previously developed in the Ficus genus to screen molecular markers with high transferability and high stability. Then, the analyses were performed using the primers labeled with fluorescent dyes and automated genetic analyzer to generate a unique genotypic profile for each sample. The results showed that the 10 highly discriminative microsatellite markers were able to distinguish the samples effectively, and the phylogenetic analysis was carried out by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) to divide the old banyan trees into 2 groups in the northeastern and western regions of Taiwan. The results also imply that human influence and natural barrier may be the main reason for gene flow and genetic clustering of old banyan trees. This study not only helps us to understand the genetic relatives of Taiwan banyan tree, but also shows that geographical distribution may be affected by human. In the future, if more areas to collect more samples, we can more clearly understand the genetic relationship between Taiwan's old banyan trees and their geographical distribution.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII Abbreviations VIII Chapter 1 Introduction 1 1.1 Old trees 1 1.2 Banyan tree (Ficus microcarpa) 1 1.2.1 Phenotypic description and classification of banyan tree 2 1.2.2 Heritage of National Cheng Kung University 3 1.3 DNA molecular markers 4 1.3.1 Characteristics of DNA molecular markers 4 1.3.2 Microsatellite markers 5 1.4 Specific aims 7 Chapter 2 Materials and Methods 9 2.1 Plant Material collection 9 2.2 DNA extraction 9 2.3 Microsatellite markers used in this study 10 2.4 Transferability analysis of microsatellite markers 10 2.4.1 Polymerase chain reaction (PCR) 10 2.4.2 Electrophoresis analysis 11 2.5 Fluorescent-dye labeled automated fragment analyzer 11 2.6 Polymorphism analysis of microsatellite markers 12 2.7 Phylogenetic analysis 12 2.8 Principal components analysis 13 Chapter 3 Results 14 3.1 Transferability and genotype of the developed Ficus microsatellite markers 14 3.2 Characterization of microsatellite markers in Ficus microcarpa 14 3.3 Phylogenetic relationship of old banyan trees in Taiwan 15 Chapter 4 Discussions 17 4.1 Multiplex PCR 17 4.2 Artificial distribution vs. natural distribution 18 Chapter 5 Conclusion 21 References 22 Tables 28 Figures 49 Appendix 1 The number of the registered old trees in Taiwan. 56 Appendix 2 A route map about how Prince Hirohito inspected the Group of 2nd Regiment Japanese infantry camp in the current Banyan garden of NCKU. 57 Appendix 3 The old photograph of the banyan tree planted by Prince Hirohito. 58

    1. 翁嘉駿: 台灣地區老樹保護執行成果. 行政院農業委員會 農政與農情2011(233): 65.
    2. Wiebes J: The fig wasp genus Dolichoris Hill (Hymenoptera Chalcidoidea, Agaonidae). In: Proc Kon Ned Akad Wet Ser C: 1979. 181-196.
    3. Berg CC: Flora malesiana precursor for the treatment of moraceae 6: Ficus subgenus sycomorus. Blumea 2004, 49(1):155-200.
    4. Tzeng H: Taxonomic study of the genus Ficus in Taiwan. Taichung, Taiwan: National Chung-Hsing University p 2004, 421.
    5. Riffle RL: The Tropical Look: An Encyclopedia of Dramatic Landscape Plants. Portland, Oregon: Timber Press; 1998.
    6. Zhekun Z, Gilbert MG: Moraceae. Flora of China 2003, 5:21-73.
    7. 沈競辰: 發現台灣老樹: 晨星; 2004.
    8. 張蕙芬、潘智敏: 台灣老樹地圖: 大樹文化; 2002.
    9. 張蕙芬、潘智敏: 台灣老樹旅行: 天下文化; 2014.
    10. 羅宗仁、鍾詩文: 台灣種樹大圖鑑(上): 天下文化; 2007.
    11. Wiebes JT: Co-Evolution of Figs and Their Insect Pollinators. Annual Review of Ecology Systematics 1979, 10:1-12.
    12. Noort Sv, Compton S: Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology. Journal of Biogeography 1996, 23(4):415-424.
    13. Kjellberg F, Gouyon PH, Ibrahim M, Raymond M, Valdeyron G: The Stability of the Symbiosis between Dioecious Figs and Their Pollinators - a Study of Ficus Carica L and Blastophaga Psenes L. Evolution 1987, 41(4):693-704.
    14. Ao CW, Li AP, Elzaawely AA, Xuan TD, Tawata S: Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract. Food Control 2008, 19(10):940-948.
    15. Kunwar RM, Bussmann RW: Ficus (Fig) species in Nepal: a review of diversity and indigenous uses. Lyonia 2006, 11(1):85-97.
    16. 廖國媖: 成大校園老樹誌: 國立成功大學生命科學系; 2013.
    17. Agarwal M, Shrivastava N, Padh H: Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 2008, 27(4):617-631.
    18. Park YJ, Lee JK, Kim NS: Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 2009, 14(11):4546-4569.
    19. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ: SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 2002, 3(1):19.
    20. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM et al: Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics 2005, 274(5):515-527.
    21. Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J: QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theoretical and Applied Genetics 2008, 117(8):1361-1377.
    22. Rakoczy-Trojanowska M, Bolibok H: Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cellular and Molecular Biology Letters 2004, 9(2):221-238.
    23. Jurka J, Pethiyagoda C: Simple repetitive DNA sequences from primates: compilation and analysis. Journal of Molecular Evolution 1995, 40(2):120-126.
    24. Li YC, Korol AB, Fahima T, Beiles A, Nevo E: Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology 2002, 11(12):2453-2465.
    25. Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M: Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species. PLoS One 2013, 8(6):e67742.
    26. Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M: Genome-Wide Development and Use of Microsatellite Markers for Large-Scale Genotyping Applications in Foxtail Millet [Setaria italica (L.)]. DNA Research 2013, 20(2):197-207.
    27. Powell W, Machray GC, Provan J: Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1996, 1(7):215-222.
    28. Schug MD, Wetterstrand KA, Gaudette MS, Lim RH, Hutter CM, Aquadro CF: The distribution and frequency of microsatellite loci in Drosophila melanogaster. Molecular Ecology 1998, 7(1):57-70.
    29. Wang Z, Weber JL, Zhong G, Tanksley SD: Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics 1994, 88(1):1-6.
    30. Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 2002, 30(2):194-200.
    31. Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S: Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics 2000, 100(5):713-722.
    32. Levinson G, Gutman GA: Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution 1987, 4(3):203-221.
    33. Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR: Genome-Wide Distribution and Organization of Microsatellites in Plants: An Insight into Marker Development in Brachypodium. PLoS One 2011, 6(6):e21298.
    34. Sugita T, Semi Y, Sawada H, Utoyama Y, Hosomi Y, Yoshimoto E, Maehata Y, Fukuoka H, Nagata R, Ohyama A: Development of simple sequence repeat markers and construction of a high-density linkage map of Capsicum annuum. Molecular Breeding 2013, 31(4):909-920.
    35. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JF, Ferreira ME: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biology 2004, 4(1):11.
    36. Ercisli S, Ipek A, Barut E: SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biochemical Genetics 2011, 49(9-10):555-561.
    37. Sui C, Wei JH, Chen SL, Chen HQ, Yang CM: Development of genomic SSR and potential EST-SSR markers in Bupleurum chinense DC. African Journal of Biotechnology 2009, 8(22):6233-6240.
    38. Marulanda ML, Lopez AM, Claroz JL: Analyzing the genetic diversity of Guadua spp. in Colombia using rice and sugarcane microsatellites. Crop Breeding and Applied Biotechnology 2007, 7(1):43-51.
    39. Chen SY, Lin YT, Lin CW, Chen WY, Yang CH, Ku HM: Transferability of rice SSR markers to bamboo. Euphytica 2010, 175(1):23-33.
    40. Dangl GS, Yang J, Golino DA, Gradziel T: A practical method for almond cultivar identification and parental analysis using simple sequence repeat markers. Euphytica 2009, 168(1):41-48.
    41. Liesebach H, Schneck V, Ewald E: Clonal fingerprinting in the genus Populus L. by nuclear microsatellite loci regarding differences between sections, species and hybrids. Tree Genetics & Genomes 2010, 6(2):259-269.
    42. Zheng L, Nason JD, Liang D, Ge X, Yu H: Development and characterization of microsatellite loci for Ficus hirta (Moraceae). Application in Plant Sciences 2015, 3(7).
    43. He C, Poysa V, Yu K: Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and Applied Genetics 2003, 106(2):363-373.
    44. Lee JM, Nahm SH, Kim YM, Kim BD: Characterization and molecular genetic mapping of microsatellite loci in pepper. Theoretical and Applied Genetics 2004, 108(4):619-627.
    45. Rohlf F, NTSYS-pc NT: Multivariate Analysis System, Version 2.10 e, Applied Biostatistics. Inc, New York 2000.
    46. Lin H-S: 台灣小米種原遺傳歧異度與原住民關係之探討. 成功大學生命科學系學位論文 2012:1-320.
    47. Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y: Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theoretical and Applied Genetics 2009, 118(4):821-829.
    48. Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV, Tuli R: EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genetics & Genomes 2011, 7(1):207-219.
    49. Scott IAW, Hayes CM, Keogh JS, Webb JK: Isolation and characterization of novel microsatellite markers from the Australian tiger snakes (Elapidae : Notechis) and amplification in the closely related genus Hoplocephalus. Molecular Ecology Notes 2001, 1(3):117-119.
    50. Schuelke M: An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 2000, 18(2):233-234.
    51. Ottewell KM, Donnellan SC, Moran GF, Paton DC: Multiplexed microsatellite markers for the genetic analysis of Eucalyptus leucoxylon (Myrtaceae) and their utility for ecological and breeding studies in other Eucalyptus species. Journal of Heredity 2005, 96(4):445-451.
    52. Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA: Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 1995, 30(3):450-458.
    53. Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF: M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 2001, 31(1):24-26, 28.
    54. Culley TM, Stamper TI, Stokes RL, Brzyski JR, Hardiman NA, Klooster MR, Merritt BJ: An Efficient Technique for Primer Development and Application That Integrates Fluorescent Labeling and Multiplex Pcr. Applications in Plant Sciences 2013, 1(10).
    55. Avise JC: Phylogeography: the history and formation of species: Harvard university press; 2000.
    56. Knowles LL, Maddison WP: Statistical phylogeography. Molecular Ecology 2002, 11(12):2623-2635.
    57. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC: Intraspecific Phylogeography - the Mitochondrial-DNA Bridge between Population-Genetics and Systematics. Annual Review Ecology Systematics 1987, 18:489-522.
    58. Wang JP, Lin HD, Huang S, Pan CH, Chen XL, Chiang TY: Phylogeography of Varicorhinus barbatulus (Cyprinidae) in Taiwan based on nucleotide variation of mtDNA and allozymes. Molecular Phylogenetics and Evolution 2004, 31(3):1143-1156.
    59. Jang-Liaw NH, Lee TH, Chou WH: Phylogeography of Sylvirana latouchii (Anura, Ranidae) in Taiwan. Zoological Science 2008, 25(1):68-79.
    60. Lin H-S, Chiang C-Y, Chang S-B, Liao G-I, Kuoh C-S: Genetic diversity in the foxtail millet (Setaria italica) germplasm as determined by agronomic traits and microsatellite markers. Australian Journal of Crop Science 2012, 6(2):342.
    61. el Mousadik A, Petit RJ: Chloroplast DNA phylogeography of the argan tree of Morocco. Molecular Ecology 1996, 5(4):547-555.
    62. Vavilov NI: The origin, variation, immunity and breeding of cultivated plants. Soil Science 1951, 72(6):482.
    63. Vavilov NI, Freier F: Studies on the origin of cultivated plants. Studies on the origin of cultivated plants 1926.

    Website:
    Cultural Affairs of Taipei City Government (http://www.culture.gov.taipei/frontsite/tree/; accessed on 01/09/2016)

    Agriculture Bureau of Taichung City Government (http://www.agriculture.taichung.gov.tw/; accessed on 01/09/2016)

    Agriculture Bureau of Tainan City Government (http://oldtree.tainan.gov.tw/; accessed on 01/09/2016)

    Agriculture Bureau of Hualien County Government (http://nature.hl.gov.tw/; accessed on 01/09/2016)

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE