| 研究生: |
林冠騰 Lin, Kuan-Teng |
|---|---|
| 論文名稱: |
輕軌虛驚事件之風險評估 Risk Assessment of Light Rail Transit Near Miss |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 虛驚事件 、輕軌 、風險評估 、零膨脹卜瓦松 、侵入後時間 、風險優先指數 |
| 外文關鍵詞: | Near Miss, Light rail, Risk assessment, Zero-inflated Poisson, Post encroachment time, Risk Priority Number |
| 相關次數: | 點閱:196 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高雄輕軌為台灣首座通車的輕軌運輸系統,服務於人口密集、交通繁忙的市中心,為市民提供另一種大眾運輸之選擇,但同時也對於輕軌路口造成大量交通運輸風險。虛驚事件為完整事故序列中最接近事故最終狀態之截斷,若無法剔除則會演變成事故,而在交通運輸當中,駕駛員可以採取緊急行動以避免事故的發生。雖然民國110年僅有11起輕軌與公路車輛之碰撞事故,卻有著7219件之虛驚事件,使輕軌列車與公路車輛時常行駛於風險交通環境之中,過多的虛驚事件也對輕軌駕駛造成巨大的工作壓力,甚至需要就醫。由於虛驚事件與事故的成因有些許的共同點,因此可以透過虛驚事件之學習,除了了解虛驚事件之成因,更可以減少事故的發生。
本研究將對於輕軌虛驚事件之風險進行探討與評估,以零膨脹卜瓦松(Zero-inflated Poisson, ZIP)分析虛驚事件之發生頻率與其因子以及藉由侵入後時間 (Post encroachment time, PET)進行虛驚事件嚴重度之量化與分級,以風險優先指數(Risk Priority Number, RPN)的嚴重度、發生機率之乘積進行輕軌列車通過路口時之風險評估,分析危險行駛情境。研究結果顯示,於研究路口每兩小時至少發生一次虛驚事件之機率為19%;與輕軌列車行駛方向相同之汽機車較容易發生虛驚事件;右轉侵入輕軌軌道之車輛較容易產生虛驚事件,而於直行綠燈與轉向綠燈分開之路口也同樣的較容易發生虛驚事件。此外,處於綠燈起步狀態,位於輕軌列車左側欲右轉侵入軌軌道之車輛於路口對輕軌列車造成最大之虛驚風險。
Kaohsiung Light Rail is the first operational light rail transportation system of Taiwan, introducing a significant amount of transportation risk at its intersections. Failure to eliminate near-miss incidents could lead to their escalation into accidents. Light rail drivers can take emergency actions to prevent accidents. Although there were only 11 collisions between the light rail and road vehicles in the year 2021, there were 7219 near-miss incidents, resulting in frequent operation of light rail trains and vehicles within a high-risk traffic environment.
This study utilizes a Zero-Inflated Poisson analysis to examine the frequency and factors influencing near-miss incidents. It also quantifies and categorizes the severity of these incidents using Post-Encroachment Time and employs a Risk Priority Number for assessing the risk when light rail trains pass through intersections. The research findings indicate that there is a 19% probability of at least one near-miss incident occurring every two hours. Vehicles moving in the same direction as the light rail train, making right turns onto the light rail track, and intersections with only a green light for straight-through traffic are more susceptible to near-miss incidents. Additionally, vehicles situated on the left side of the light rail train, intending to make a right turn onto the track while the light is green, pose the highest level of near-miss risk to the light rail train.
Abd Rahman, N., Prasetijo, J., Musa, W. Z., Mohd Jaini, Z., Yunus, R., & Rahmat, S. N. (2016). Modeling Zero – Inflated Regression of Road Accidents at Johor Federal Road F001. MATEC Web of Conferences, 47. https://doi.org/10.1051/matecconf/20164703001
Aminmansour, S., Maire, F., & Wullems, C. (2014). Near-miss event detection at railway level crossings. 2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA),
Borowsky, A., Palacci, N., Itzhaki, M., & Shinar, D. (2019). The assessment of hazard awareness skills among light rail drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 67, 15-28. https://doi.org/https://doi.org/10.1016/j.trf.2019.10.003
Cooper, P. (1984). Experience with traffic conflicts in Canada with emphasis on “post encroachment time” techniques. In International calibration study of traffic conflict techniques (pp. 75-96). Springer.
Di Bona, G., Silvestri, A., Forcina, A., & Petrillo, A. (2017). Total efficient risk priority number (TERPN): a new method for risk assessment. Journal of Risk Research, 21(11), 1384-1408. https://doi.org/10.1080/13669877.2017.1307260
Gnoni, M. G., & Saleh, J. H. (2017). Near-miss management systems and observability-in-depth: Handling safety incidents and accident precursors in light of safety principles. Safety Science, 91, 154-167. https://doi.org/https://doi.org/10.1016/j.ssci.2016.08.012
Hayward, J. C. (1972). Near miss determination through use of a scale of danger.
Kamble, S. N., & Rajiv, B. (2022). Significance of risk priority number in machine condition monitoring. Materials Today: Proceedings, 50, 1930-1935. https://doi.org/10.1016/j.matpr.2021.09.317
Kim, K. O., & Zuo, M. J. (2018). General model for the risk priority number in failure mode and effects analysis. Reliability Engineering & System Safety, 169, 321-329. https://doi.org/10.1016/j.ress.2017.09.010
Kleindorfer, P., Oktem, U. G., Pariyani, A., & Seider, W. D. (2012). Assessment of catastrophe risk and potential losses in industry. Computers & Chemical Engineering, 47, 85-96. https://doi.org/https://doi.org/10.1016/j.compchemeng.2012.06.033
Lee, A. H. (2002). <(ZIP)Modeling young driver motor vehicle crashes data with extra.pdf>.
Lord, D., Washington, S. P., & Ivan, J. N. (2005). Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accid Anal Prev, 37(1), 35-46. https://doi.org/10.1016/j.aap.2004.02.004
Matsui, Y., Takahashi, K., Imaizumi, R., & Ando, K. (2011). Car-to-pedestrian contact situations in near-miss incidents and real-world accidents in Japan. 22nd International Technical Conference on the Enhanced Safety of Vehicles,
Nicholson, A. (1985). The variability of accident counts. Accident Analysis & Prevention, 17(1), 47-56.
Oh, J., Washington, S. P., & Nam, D. (2006). Accident prediction model for railway-highway interfaces. Accid Anal Prev, 38(2), 346-356. https://doi.org/10.1016/j.aap.2005.10.004
Olszewski, P., Osińska, B., Szagała, P., Włodarek, P., Niesen, S., Kidholm Osmann Madsen, T., van Haperen, W., Johnsson, C., Laureshyn, A., & Varhelyi, A. (2016). Review of current study methods for VRU safety. Part 1–Main report.
Ouédraogo, A., Groso, A., & Meyer, T. (2011). Risk analysis in research environment – Part I: Modeling Lab Criticity Index using Improved Risk Priority Number. Safety Science, 49(6), 778-784. https://doi.org/10.1016/j.ssci.2011.02.006
Ozbay, K., Yang, H., Bartin, B., & Mudigonda, S. (2008). Derivation and validation of new simulation-based surrogate safety measure. Transportation research record, 2083(1), 105-113.
Peesapati, L. N., Hunter, M. P., & Rodgers, M. O. (2018). Can post encroachment time substitute intersection characteristics in crash prediction models? Journal of Safety Research, 66, 205-211. https://doi.org/https://doi.org/10.1016/j.jsr.2018.05.002
Rajput, P., Malvoni, M., Kumar, N. M., Sastry, O. S., & Tiwari, G. N. (2019). Risk priority number for understanding the severity of photovoltaic failure modes and their impacts on performance degradation. Case Studies in Thermal Engineering, 16. https://doi.org/10.1016/j.csite.2019.100563
Saleh, J. H., Saltmarsh, E. A., Favarò, F. M., & Brevault, L. (2013). Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems. Reliability Engineering & System Safety, 114, 148-154. https://doi.org/https://doi.org/10.1016/j.ress.2013.01.006
Salmon, P. M., Read, G. J. M., Stanton, N. A., & Lenné, M. G. (2013). The crash at Kerang: Investigating systemic and psychological factors leading to unintentional non-compliance at rail level crossings. Accident Analysis & Prevention, 50, 1278-1288. https://doi.org/https://doi.org/10.1016/j.aap.2012.09.029
Ugochukwu, A. L., Lovejoy, M., & Mercy, A. (2019). Safety demonstration and risk management at rail-road level crossing at addis ababa light rail transit network. IJSRSET, 65, 103-109.
Wright, L., & van der Schaaf, T. (2004). Accident versus near miss causation: a critical review of the literature, an empirical test in the UK railway domain, and their implications for other sectors. Journal of Hazardous Materials, 111(1), 105-110. https://doi.org/https://doi.org/10.1016/j.jhazmat.2004.02.049
Zangenehpour, S., Strauss, J., Miranda-Moreno, L. F., & Saunier, N. (2016). Are signalized intersections with cycle tracks safer? A case–control study based on automated surrogate safety analysis using video data. Accident Analysis & Prevention, 86, 161-172. https://doi.org/https://doi.org/10.1016/j.aap.2015.10.025
Zheng, L., Sayed, T., & Essa, M. (2019). Validating the bivariate extreme value modeling approach for road safety estimation with different traffic conflict indicators. Accident Analysis & Prevention, 123, 314-323. https://doi.org/https://doi.org/10.1016/j.aap.2018.12.007
Zhou, C., Ding, L., Skibniewski, M. J., Luo, H., & Jiang, S. (2017). Characterizing time series of near-miss accidents in metro construction via complex network theory. Safety Science, 98, 145-158. https://doi.org/https://doi.org/10.1016/j.ssci.2017.06.012
Zhou, Z., Yu, X., Zhu, Z., Zhou, D., & Qi, H. (2023). Development and application of a Bayesian network-based model for systematically reducing safety risks in the commercial air transportation system. Safety Science, 157, 105942. https://doi.org/https://doi.org/10.1016/j.ssci.2022.105942
江明穎. (2006). 輕軌電車與一般車輛路口衝突風險分析之研究.
許添本, & 陳雅琳. (2019). 高雄輕軌沿線交叉口安全評估之研究. 運輸學刊,
校內:2028-08-25公開