簡易檢索 / 詳目顯示

研究生: 林耀三
Lin, Yao-San
論文名稱: 針對小型製造資料的漸增式學習演算法
An incremental learning algorithm from small sequential manufacturing data sets
指導教授: 利德江
Li, Der-Chiang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 60
中文關鍵詞: 時間數列小樣本類神經網路相依資料機器學習
外文關鍵詞: Dependent data, Machine Learning, Time Series, Small data sets, Artificial Neural Network
相關次數: 點閱:154下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對極小樣本的資料,根據統計理論所做出的決策會傾向於較保守而穩健;然而在生產管理初期,即使可以從有限的資料得到取得知識來做決策,就長期而言,這樣的初期知識勢必會受到未來新進的資料干擾,而變得很不穩定的。更糟的是,瞬息萬變的商品市場迫使決策者必須要及早取得或學習生產管理的知識。我們過去一直將研究主題鎖定在將小樣本的學習機制應用在生產實務上,特別是彈性製造系統的排程問題;目前更進一步針對序列型的小樣本資料,發展出一套漸進學習的步驟,主要的考量還是在於將初期資料所帶來的限制予以放鬆:一、初期所收集的資料量不足;二、資料具有時間性。本研究主要是對於製造初期所取得之小量並具有時間相關性的資料,利用模糊理論的基礎,發展出一個藉由後向式追蹤過程來探索預測未來資料所需的資訊;這其中也包含利用輔助性的樣本產生額外的虛擬資訊。經過實例驗證,這一套機制能加速達成學習任務,並同時進行修正。

    Since most statistical theories are not expected to generate significant conclusions
    when applied on very small data sets, knowledge derived from limited data gathered
    in the early manufacturing stages is considered too fragile for long term production
    decisions. Unfortunately, in practice this work has to be done in a competitive
    environment. We have discussed learning from small data sets for scheduling flexible
    manufacturing systems in previous studies, and this article will focus further on the
    developing of an incremental learning procedure for small sequential data sets. The
    main consideration concentrates on two properties of data: that the data size is very
    small and the data are time-dependent. For a small sequential manufacturing data set
    collected in the early stages, this study, on the basis of fuzzy theories and artificial
    neural network, developed a unique backward tracking process for exploring
    predictive information through the strategy of shadow data generation. The extra
    information extracted from the shadow data is proven to accelerate the learning task
    and dynamically correct the derived knowledge in a concurrent fashion.

    ABSTRACT I CONTENTS III LIST OF TABLES V LIST OF FIGURES VI CHAPTER I. INTRODUCTION 1 1.1 Motivation 1 1.2 Objective 2 II. LITERATURE REVIEWS 3 2.1 Machine learning in manufacturing 3 2.2 Learning with small data sets 5 2.3 Learning with time series data 9 III. THE INCREMENTAL LEARNING ALGORITHM FOR SEQUENTIAL DATA SET 12 3.1 Estimation of central location of data 12 3.2 Assigning MF values 15 3.3 The Incremental Backward Tracking Process 19 3.4 The relationship between real and shadow data 23 IV. THE EXPERIMENTAL STUDY 24 4.1 Applying BPN to the Original data 26 4.2 Applying IBTP to augment the original set 28 V. DISSCUSSION 32 REFERENCES 34 APPENDICES A THE SYNTHETIC CONTROL CHART TIME SERIESDATASET 39 B LEARNING WITH ARTIFICIAL NEURAL NETWORKS 50 B.1 Perceptron 51 B.2 Gradient Descent and the Delta Rule 53 B.3 Multilayer Structure and Back-Propagation Neural Networks 56

    Alcock, R. J., Manolopoulos, Y., 1999. Time series similarity queries employing a feature-based approach. 7th Hellenic Conference on Informatics. Ioannina, Greece.

    Anthony, M., Biggs, N. 1997. Computational Learning Theory. Cambridge University Press.

    Aytug, H., Bhattacharyya, S., Koehler, G. J., et al., 1994. A review of machine learning. IEEE Transactions on Engineering Management 41(2), 165–171.

    Chen, C. C., Yih, Y., 1996. Identifying attributes for knowledge-based development in dynamic scheduling environments. International Journal Production Research 34(6), 1739–1755.

    Chi, H.M., Ersoy, M.K., 2005. A statistical self-organizing learning system for remote sensing classification. IEEE Transactions on Geoscience and Remote Sensing 43, 1890–1900.

    Doan, K., Wong, K. P. 1995. Artificial intelligence-based machine-learning system for Thermal generator scheduling. IEE Proceedings-Generation Transmission and Distribution 142(2), 195–201.

    Huang, C., Moraga, C., 2004. A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning 35, 137–161.

    Jang, J. S. R., 1993. ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Transactions on Systems, Man and Cybernetics 23(3), 665–685.

    Kadous, M. W., Sammut, C., 2004. Constructive induction for classifying time series. Lecture Notes in Computer Science 3201, 192–204.

    Lee, C.Y., Piramuthu, S., Tsai, Y. K., 1997. Job shop scheduling with a genetic algorithm and machine learning. International Journal of Production Research 35(4), 1171–1191.

    Li, D. C., Chen, L. S., Lin, Y. S., 2003. Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research 41(17), 4011–4024.

    Li, D. C., Lin, Y. S., 2006b. Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research 175(1), 413–434.

    Li, D. C., Wu, C., Chang, F. M., 2005. Using Data-fuzzification Technology in Small Data Set Learning to Improve FMS Scheduling Accuracy. International Journal of Advanced Manufacturing Technology 27, 321–328.
    Li, D. C., Wu, C., Tsia, T. I., and Chang, F. M. 2006a, Using Mega-Fuzzification and Data Trend Estimation in Small Data Set Learning for Early FMS Scheduling Knowledge. Computers & Operations Research 33, 1857–1869.

    Lindsay, D., Cox, S., 2005. Effective probability forecasting for time series data using standard machine learning techniques. Lecture Notes in Computer Science, 3686, 35–44.

    Mitchell, T. M., 1997. Machine Learning. New York: McGraw-Hill.

    Monch, L., Zimmermann, J., Otto, P., 2006. Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machines. Engineering Applications of Artificial Intelligence 19(3), 235–245.

    Montanes, E., Quevedo, J. R., Prieto, M. M., et al., 2002. Forecasting time series combining machine learning and Box-Jenkins timeseries. Lecture Notes in Artificial Intelligence 2527, 491–499.

    Nakasuka, S., Yoshida, T., 1992. Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool. International Journal Production Research 30, 411–431.

    Niyogi, P., Girosi, F., Tomaso, P., 1998. Incorporating prior information in machine learning by creating virtual examples. Proceeding of the IEEE, 275–298.

    Pierreval, H., Ralambondrainy, H., 1990. A simulation and learning technique for generating knowledge about manufacturing systems behavior. Journal of the Operational Research Society 41(6), 461–474.

    Popescu, C. A., Wong Y. S., 2005. Nested Monte Carlo EM algorithm for switching state-space models. IEEE Transactions on Knowledge and Data engineering 17, 1653–1663.

    Priore, P., de la Fuente, D., Gomez, A., Puente, J., 2001. A review of machine learning in dynamic scheduling of flexible manufacturing systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15, 251–263.

    Priore, P., de la Fuente, D., Puente, J., et al., 2006. A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. Engineering Applications of Artificial Intelligence 19(3), 247–255.

    Prudenico, R. B. C., Ludermir, T. B., 2004. Meta-learning approaches to selecting time series models. Neurocomputing 61, 121–137.

    Prudenico, R. B. C., Ludermir, T. B., 2004. Using machine learning techniques to combine forecasting methods. Lecture Notes in Artificial Intelligence 3339, 1122–1127.

    Quinlan, J. R., 1996. Learning decision tree classifiers. ACM Computing Surveys 28(1), 71–72.

    Sabuncuoglu, I., Touhami, S., 2002. Simulation metamodeling with neural networks: an experimental investigation. International Journal of Production Research 40, 2483–2505.

    Shaw, M. J., Park, S., Raman, N., 1992. Intelligent scheduling with machine learning capabilities: The induction of scheduling knowledge. IIE Transactions 24(2), 156–168.

    Sun, Y. L., Yih, Y., 1996. An intelligent controller for manufacturing cells. International Journal of Production Research 34(8), 2353–2373.

    下載圖示 校內:立即公開
    校外:2006-11-17公開
    QR CODE