| 研究生: |
陳韋廷 Chen, Wei-Ting |
|---|---|
| 論文名稱: |
脈衝式雷射點焊之雷射對焦對焊接品質與應力分佈影響 Effects of the laser focusing for the welding quality and stress distribution in pulsed laser spot welding |
| 指導教授: |
林震銘
Lin, Jehnming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 脈衝雷射焊接 、焊接品質 、應力分佈 、雷射對焦系統 |
| 外文關鍵詞: | Pulse laser welding, Welding quality, Stress distribution, Laser focusing system |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用脈衝式Nd-YAG雷射對304不銹鋼試片進行焊接加工,探討雷射對焦條件對於焊接品質與應力分佈的影響。實驗中透過自行開發的對焦機構與影像處理系統找出最佳的雷射焦點位置,達到自動化整合雷射製成的目的。
首先實驗中使用不同夾持力進行焊接測試,探討其對於焊接品質的影響。透過焊接形貌量測及抗拉試驗發現使用足夠的夾持力進行雷射焊接時,能夠獲得良好的焊接品質。同時經過動力計量測與數值模擬結果的相互比較驗證。進一步探討偏轉角度與離焦距離對於焊接品質之影響。隨著偏轉角度與離焦距離的增加將導致抗拉強度降低等現象。經由焊接接點的剖面金相分析發現,偏轉角度與離焦距離的增加將降低熱影響區及增加脆性金相結構的比例。相較電池多極柄的電阻焊應用,本文的脈衝雷射焊接系統具有較完整的製程參數及自動化整合的特性。
In this study, Nd-Yag pulsed laser was used to conduct a welding experiment with 304 stainless steel plates, and the effects of the laser focusing for the welding quality and stress distribution were discussed in details. In the experiment, the laser spot was detected by a focusing mechanism and image processing system. The automatic focusing had been achieved for the laser spot welding.
Firstly, the welding test was carried out with different clamping forces and its influences on the welding quality were discussed. According to the weld contour measurement and tensile test, it was found that a good welding quality could be achieved with a sufficient clamping force in welding. In comparison with the results of dynamic force measurement and numerical simulation, it is to verify the effects of laser heating and thermal stress induced in pulsed laser spot welding. Finally, the influences of the laser beam angle and focusing condition on the welding quality were further discussed. As the laser beam angle and defocusing distance were increased, the tensile strength and the heat affected zone of the weld were decreased. Corresponding to the microstructures of welding zone the portion of the brittle phase increases with the beam angle and the defocusing distance, and it might reduce the weld tensile strength. Furthermore a comparison between the electric resistance welding and pulsed laser welding has been made for the multi-electrode battery welding applications, the pulsed laser system developed in the study provides a possible way with a complete set of the process parameters to achieve an automatic welding process
[1] 余亮, ”0.3mm厚鍍鎳鋼片微電阻點焊接頭组織性能研究”, 現代焊接, 第10期, 2011年
[2] M.J. Brand, P.A. Schmidt, M.F. Zaeh, A. Jossen, “Welding techniques for battery cells and resulting electrical contact resistances” Journal of Energy Storage Volume 1, Pages 7-14, June 2015
[3] P. Schmitz, J.B. Habedank, M.F. Zaeh, “Spike laser welding for the electrical connection of cylindrical lithium-ion batteries”Journal of Laser Applications ,Volume 30, Issue 1, Page 012004, January 2018
[4] P. Schmitz, “Comparative Study on Pulsed Laser Welding Strategies for Contacting Lithium-Ion Batteries” Advanced Materials Research, Volume 1140,Page 312-319, August 2016
[5] J.D. Kim, S.J. Yoo, J.S. Kim, “Optimization of Welding Condition for Sealing of Lithium-ion Battery by Pulsed Nd:YAG Laser” Materials Science Forum, Volumes 580-582, Page 523-526, June 2008
[6] V.R. Rikka, S.R. Sahu, R. Tadepalli, R. Bathe, T. Mohan, R. Prakash, G. Padmanabham, R. Gopalan “Microstructure and Mechanical Properties of Pulse Laser Welded Stainless Steel and Aluminum Alloys for Lithium-Ion Cell Casings” Journal of Materials Science and Engineering B6(9-10), Page 218-225, 2016
[7] M.J. Torkamany, J. Sabbaghzadeh, M.J. Hamedi, “ Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels” Materials & Design, Volume 34, Pages 666-672, February 2012
[8] P.A. Schmid, M. Schweier, M.F. Zaeh “Joining of lithium-ion batteries using laser beam welding: Electrical losses of welded aluminum and copper joints” Laser Institute of America, ICALEO 2012, Page 915-923 , 27 September 2018
[9] B. Mehlmann, A.Olowinsky, M. Thuilot, A. Gillner, “Spatially Modulated Laser Beam Micro Welding of CuSn6 and Nickel-plated DC04 Steel for Battery Applications”, Journal of laser micro nanoengineering, Volume 9, No. 3, Page 276-281, 2014
[10] Y.C. Liao, M.H. Yu, ” Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet” Journal of Materials Processing Technology, Volume 190, Issues 1–3, Pages 102-108, 23 July 2007.
[11] P. Saha, D. Waghmare “Parametric optimization for autogenous butt laser welding of sub-millimeter thick SS 316 sheets using central composite design” Optics & Laser Technology, Volume 122, , 105833, February 2020
[12] H.S. Chang, H.C. Kwon, ”In-Process Monitoring of Micro Resistance Spot Weld Quality using Accelerometer” Volume 29, Issue 1, Page 115-122, 2011
[13] O.F. Bondarenko, I.V. Bondarenko, P.S. Safronov, V.M. Sydorets “Current and force control in micro resistancewelding machines Review and development” IEEE, Conference Paper, Page 298-302, June 2013
[14] C.S. Chien, K.E. JR, “Investigation of monitoring systems for resistance spot welding.” Welding journal, Volome 81, Number 9, Page 195-199, 2002
[15] 王彰群, ”自製影像式量測儀之自動化研究”, 國立交通大學機械工程所碩士論文,2000年。
[16] 蔡博智, ”影像追蹤方法影用在監控系統之研究”, 中原大學機械工程學系碩士論文, 2002年。
[17] O. Armbruster, A. Naghilou, H. Pöhl, W. Kautek, “In-situ and non-destructive focus determination device for high-precision laser applications”, Journal of Optics, Volume 18, Number 9, 2 August 2016
[18] S. Donadello, M. Motta, A.G. Demir, B.Previtali, “Monitoring of laser metal deposition height by means of coaxial laser triangulation” Optics and Lasers in Engineering, Volumw 112, Page 136-144, 2019
[19] E. Aoki, E. Kobayashi, H. Inada, S. Omori, T. Maruyama, H. Iseki, Y. Muragaki, K. Takakura, I. Sakuma, “Development of an automatic focusing system for a precise laser ablation system in neurosurgery”, International Congress Series, Volume 1256, Page 514-521, 2003
[20] W.M. Steen, J. Mazumder, “Laser material processing”,4th Edition, Springer, London, Page 11-135, 2010.
[21] 陳芳辰,”多軸雷射披覆於非平面積層織幾何控制”, 國立成功大學機械工程研究所碩士論文,2016.
[22] E.K. Asibu Jr, ”Principles of laser material processing”, Wiley, Page 520-521,2009.
[23] F.P. Incropera, D.P. DeWitt, T.L. Bergrman, A.S. Lavine, “Heat Transfer & Fluid Book Frank PIncropera Fundamentals of heat and mass transfer” , 2007.
[24] H. Arnet and F. Vollertsen, “Extending laser bending for the generation of convex shapes” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Volome 209, Page 433-442, 1995.
[25] 蔡明俊,上課講義,民105年2月25日。
[26] 蔡明傑, ”應用影像處理技術於被動元件識別之研製”, 逢甲大學自動控制學系碩士論文, 2001年
[27] M, Goyal “Morphological Image Processing”, IJCST Volme 2, Issue 4, Oct. - Dec. 2011
[28] 盧明智, ”影像辨識即時物體追蹤系統”, 聖約翰科技大學電子工程學系碩士論文, 2018年
[29] 黃俊霖, ”以CamShift演算法為基礎之目標物即時影像追蹤系統設計與實現”, 國立成功大學碩士論文,2009年。
[30] P. Joshi, D.M. Escrivá, V. Godoy, “OpenCV by Example”, Kindle Edition, 2017
[31] 李坤洲, ”雷射成型於薄板變形之分析及量測”, 國立成功大學機械工程系碩士論文, 2001年。
[32] 鄒旻成, ”脈衝式雷射送線焊接與披覆之影像感測研究”, 國立成功大學機械工程系碩士論文, 2019年。
[33] J. Lawrence, J. Pou, D.K.Y. Low, E. Toyserkani, “Advances in Laser Materials Processing”, Woodhead Publishing, 2010.
[34] T. Zacharia, S.A. David, J.M. Vitek, and T. Debroy, ” Heat Transfer during Nd-Yag Pulsed Laser Welding and Its Effect on Solidification Structure of Austenitic Stainless Steels” Metallurgical Transactions A, Volume 20A, 957-968, May 1989
[35] N. Kumar, M. Mukherjee, A. Bandyopadhyay,.” Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam” Optics & Laser Technology, Volume 94, Pages 296-309, 1 September 2017
校內:2030-07-24公開