簡易檢索 / 詳目顯示

研究生: 陳威宇
Chen, Wei-Yu
論文名稱: 氧化鎂及氧化鉿作為氧化鋅薄膜電晶體介電層之電特性與穩定性研究
Transistor characteristics and electrical stability of ZnO thin film transistors with MgO and HfOx dielectrics
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 高介電常數高載子遷移率閘極偏壓應力表面電漿處理
外文關鍵詞: high dielectric constant, high field effect mobility, gate bias stress, surface plasma treatement
相關次數: 點閱:120下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著顯示器尺寸發展越來越大,對於薄膜電晶體的載子遷移率的要求也越來越高,同時為了減少功率消耗,降低電晶體的操作電壓也是一個重要課題。本研究利用有高介電常數的氧化鎂及氧化鉿薄膜做為氧化鋅薄膜電晶體的介電層材料,研究其對電晶體的臨界電壓與載子遷移率的影響;同時針對施予閘極偏壓的條件下,研究電晶體的電性穩定性行為,透由在介電層上的不同電漿氣氛表面處理,改善氧化鋅內及氧化鋅與介電層界面的缺陷含量,提升電晶體的電性穩定性。
    本研究第一部分為調變電子束蒸鍍氧化鎂薄膜時通入氧氣的流量,探討不同氧含量的氧化鎂薄膜的材料特性變化及對氧化鋅薄膜電晶體特性的影響。漏電流量測發現蒸鍍時通入氧氣可以降低氧化鎂的漏電流低於1×10-7 A/cm2,同時低掠角X光繞射結果觀察到蒸鍍時通入氧氣能讓氧化鎂的(111)結晶面成長。使用通入氧氣的氧化鎂做為介電層,氧化鋅薄膜電晶體的載子遷移率可以提高到78.3 cm2/Vs,臨界電壓為0.68V。透由X光光譜儀及穿透式電子顯微鏡研究氧化鎂內氧氣含量提升載子遷移率提高的原因。
    第二部分則針對使用通氧氧化鎂介電層的氧化鋅薄膜電晶體,對閘極偏壓應力的電性穩定性研究。本研究將電晶體施加正閘極偏壓應力3秒及以負閘極偏壓照光進行復原動作,計算電晶體的有效載子捕獲密度及關電流變化,探討元件的臨界電壓偏移行為;同時利用O2、N2O及Ar三種氣氛,在氧化鎂及氧化鋅介面進行電漿處理1分鐘,藉以增加電晶體的電性穩定性。使用N2O電漿處理的元件,有最小的臨界電壓偏移,X光光譜結果顯示,N2O電漿處理可以抑制氧化鋅主動層在正閘極偏壓應力下的氧空缺生成,進而增加元件的電性穩定性。
    第三部分研究則是同樣利用電子束蒸鍍高介電常數材料氧化鉿做為介電層,探討電晶體在閘極偏壓下的電性穩定性行為。氧化鉿表面亦使用O2及N2O兩種電漿氣氛處理,觀察與使用氧化鎂介電層元件的電性表現差異及電性穩定性提升的效果。使用高介電常數的氧化鉿,使氧化鋅電晶體元件與使用氧化鎂介電層一樣,擁有高達270 cm2/Vs的載子遷移率及0.43V的臨界電壓。由於介電常數的差異,使利用氧化鉿介電層的電晶體有較使用氧化鎂介電層的元件更好的電性表現,但在閘極偏壓應力電性穩定性上表現卻較差,透由電漿處理於氧化鉿表面可以稍微提升穩定性值。在單純負閘極偏壓照光下的研究,透由照射不同波長雷射發現,電洞被界面缺陷捕捉以及ZnO中帶電氧空缺捕捉電子先後造成元件的臨界電壓偏移,N2O電漿處理減少了界面及ZnO中的氧空缺,使臨界電壓偏移的量減少,增加元件的電性穩定性。

    Thin film transistor-liquid crystal displays are already largely applied in our life. As the display is developed to the large size, transistor with high carrier mobility is required. At the same time, to achieve low power consumption, reduce the operation voltage is an important issue. In this study, MgO and HfOx with high dielectric constant were used as dielectric layer in ZnO-based thin film transistors. The transistor characteristic improvement including carrier mobility and threshold voltage is investigated. The electrical stability against gate bias stress is also studied. Different between MgO and HfOx are compared.
    In the first part of this study, the performance of ZnO thin film transistors using MgO gate dielectrics evaporated with andwithout introducing oxygen have been investigated. The oxygen introduced during MgO deposition improves the field-effect mobility significantly as compared to the device without introducing oxygen during MgO deposition. The oxygen-introduced MgO exhibits a dielectric constant of 10.9 and the field-effect mobility of the TFT device is enhanced to 78.3 cm2/Vs. The threshold voltages can also be related to whether the oxygen is introduced into MgO or not. The interface between oxygen-introduced MgO and ZnO is examined and its connection with mobility enhancement is discussed.
    In the second part of this study, plasma treatments with different gases applied on the MgO dielectric surface will amend the TFT’s electrical stability and x-ray photoelectron spectroscopy analysis is done nearby the ZnO/MgO interface to study the change of oxygen chemical bonding states. The results show that MgO dielectric without plasma treatment causes the threshold voltage shift of the transistor, which may be attributed to the migration of oxygen ion toward the ZnO/MgO interface to induce the generation of oxygen vacancies in ZnO active layer when devices are under positive gate bias stress. This instability behavior can be eliminated with N2O plasma treatment on MgO. N2O plasma treatment inhibits the generation of oxygen vacancies in ZnO against gate bias stress thus reduces the effective trap state density in the subgap of ZnO and thereby enhances the TFT’s stability. The detailed scenario for the plasma treatment effect is explored to conclude its mechanism on improving the electrical stability.
    In the third part of this study, high-k HfOx was used as the dielectric layer of ZnO-based TFTs. The field-effect mobility of the TFT device is enhanced to 270 cm2/Vs and the threshold voltages can be lowed to 0.43 V. However, with large mount of oxygen vacancies in HfOx, the electrical stability of the devices aganst positive bias stress is worst than the device with MgO dielectric. But the stability can be improved by O2 and N2O plasma treatment on HfOx surface. The electrical stability against negative gate bias illumination of transistor with HfOx dielectric has also been investigated. With illuminated by difference wavelengh laser and calculating the subthreshold swing and analyzing the oxygen chemical bonding states nearby the ZnO/HfOx interface by x-ray photoelectron spectroscopy, the interface trapped state and oxygen vacancies existed in ZnO active layer are found to cause the threshold voltage shift. The stability of ZnO TFTs is improved with using N2O plasma-treated HfOx dielectric, as this eliminate the defect in the ZnO layer.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 第二章 理論基礎 5 2-1 薄膜電晶體(Thin film transistor, TFT) 5 2-1.1 薄膜電晶體結構 5 2-1.2 薄膜電晶體操作原理 7 2-1.3 薄膜電晶體特性量測與參數計算 10 2-2 薄膜電晶體發展 14 2-2.1 氧化物半導體 (Oxide semiconductor) 14 2-2.2 高介電常數介電層 (High-k dielectric) 19 2-2.3 電漿處理 (Plasma treatment) 21 2-3 薄膜電晶體電性穩定性(Electrical stability) 23 2-3.1 正閘極偏壓應力測試(Positive gate bias stress test, PBS) 23 2-3.2 負閘極偏壓照光應力測試(Negative gate bias illumination stress test, NBIS) 24 2-4材料特性 28 2-4.1 氧化鎂(MgO)材料特性 28 2-4.2 氧化鉿(HfO2)材料特性 28 2-4.3 氧化鋅(ZnO)缺陷化學 28 第三章 實驗方法與步驟 33 3-1 實驗流程 33 3-2 實驗材料 35 3-2.1 電子束蒸鍍源 (Evaporation source) 35 3-2.2 濺鍍靶材 (Sputtering target) 35 3-2.3 基板 (Substrate) 35 3-2.4 濺鍍、蒸鍍及退火氣體 (Gas ambient) 35 3-3 實驗設備 36 3-3.1 電子束蒸鍍系統 (Electron beam evaporation system) 36 3-3.2 磁控濺鍍系統 (Magnetron sputtering system) 37 3-3.3 電漿處理系統 (Plasma treatment system) 38 3-4 薄膜電晶體製作 39 3-5 分析儀器 40 3-5.1 表面輪廓儀 (Stylus profilometry) 40 3-5.2 拉賽福背向式散射分析 (Ratherford backscattering spectrometry, RBS) 41 3-5.3 低掠角X光繞射儀 (Glancing angle x-ray diffraction, GIAXRD) 42 3-5.4 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 43 3-5.5 穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 44 3-5.6 X光光譜能譜儀 (X-ray photoelectron spectroscopy, XPS) 45 3-5.7 精密阻抗分析儀 (Precision impedance analyzer) 46 3-5.8 半導體參數分析儀 (semiconductor parameter analyzer) 47 第四章 結果與討論 48 4-1 電子束蒸鍍MgO介電層時通入的氧流量對TFT電性之影響 48 4-1.1 蒸鍍時通入氧氣與否之MgO的成分分析 48 4-1.2 蒸鍍時通入氧氣與否之MgO作為介電層性質分析 50 4.1.3 蒸鍍時通入氧氣與否之MgO作為介電層之TFT電性表現 53 4-1.4 蒸鍍時通入氧氣與否之MgO介電層結晶狀態分析 57 4-1.5 蒸鍍時通入氧氣與否之MgO介電層對上層ZnO主動層的影響 59 4-2 電漿處理於MgO介電層表面對TFT電性穩定性之影響 63 4-2.1 電漿處理對MgO介電層材料特性之影響 63 4-2.2閘極偏壓測試方法 68 4-2.3 TFT在閘極偏壓下的電性行為 68 4-2.4 電漿處理對TFT在閘極偏壓下的電性行為之影響 71 4.2.5 電漿處理對TFT電性穩定性影響之原因 76 4-3電漿處理於HfOx介電層表面對TFT電性穩定性之影響 80 4-3.1 HfOx作為介電層性質分析 80 4-3.2 HfOx作為介電層之ZnO TFT電性表現 84 4-3.3電漿處理於 HfOx表面對ZnO主動層的影響 87 4-3.4 HfOx作為介電層之ZnO TFT閘極偏壓下電性穩定性表現 89 4-3.5 MgO及HfOx介電層對ZnO TFT元件特性之差異比較 93 4-3.6 HfOx作為介電層之ZnO TFT於不同波長雷射NBIS下電性穩定性表現 95 第五章 結論 105 第六章 參考文獻 107

    1. T. Tsukada, TFT/LCD : liquid-crystal displays addressed by thin-film transistors (Gordon and Breach, Australia, 1996), p.6.
    2. C. R. Kagan and P. Andry, Thin-film transistors (Marcel Dekker, New York, 2003), p.142.
    3. T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors", Science and Technology of Advanced Materials 11, 044305 (2010).
    4. H. Kato, K. Miyamoto, M. Sano, and T. Yao, "Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness", Appl. Phys. Lett. 84, 4562 (2004).
    5. S. K. Hong, T. Hanada, Y. F. Chen, H. J. Ko, T. Yao, D. Imai, K. Araki, and M. Shinohara, "Control of polarity of heteroepitaxial ZnO films by interface engineering", Appl. Surf. Sci. 190, 491 (2002).
    6. S. R. Saudari, Y. J. Lin, Y. Lai, and C. R. Kagan, "Device configurations for ambipolar transport in flexible, pentacene transistors", Adv Mater 22, 5063 (2010).
    7. C. R. Kagan and P. Andry, Thin-film transistors (Marcel Dekker, New York, 2003), p.36.
    8. J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices Volume ΙΙ :Materials and Device Physics. (Artech House, Boston, 1992), p.409.
    9. C. R. Kagan and P. Andry, Thin-film transistors (Marcel Dekker, New York, 2003), p.37.
    10. A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. Lecomber, and A. J. Hughes, "Application of Amorphous-Silicon Field-Effect Transistors in Addressable Liquid-Crystal Display Panels", Appl. Phys. 24, 357 (1981).
    11. T. Tsukada, TFT/LCD : liquid-crystal displays addressed by thin-film transistors (Gordon and Breach, Australia, 1996), p.61.
    12. C. R. Kagan and P. Andry, Thin-film transistors (Marcel Dekker, New York, 2003), p.40.
    13. P. G. le Comber, W. E. Spear, and A. Ghaith, "Amorphous-silicon field-effect device and possible application", Electronics Letters 15, 179 (1979).
    14. R. L. Hoffman, B. J. Norris, and J. F. Wager, "ZnO-based transparent thin-film transistors", Appl. Phys. Lett. 82, 733 (2003).
    15. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, "Transparent thin film transistors using ZnO as an active channel layer and their electrical properties", J. Appl. Phys. 93, 1624 (2003).
    16. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature", Appl. Phys. Lett. 85, 2541 (2004).
    17. P. F. Carcia, R. S. McLean, and M. H. Reilly, "High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition", Appl. Phys. Lett. 88, 123509 (2006).
    18. C. C. Liu, Y. S. Chen, and J. J. Huang, "High-performance ZnO thin-film transistors fabricated at low temperature on glass substrates", Electronics Letters 42, 824 (2006).
    19. C. S. Li, Y. N. Li, Y. L. Wu, B. S. Ong, and R. O. Loutfy, "ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film", J. Appl. Phys. 102, 076101 (2007).
    20. L. Chen Sha, L. Yu Ning, W. Yi Liang, S. O. Beng, and O. L. Rafik, "Performance improvement for solution-processed high-mobility ZnO thin-film transistors", Journal of Physics D: Applied Physics 41, 125102 (2008).
    21. A. Bashir, P. H. Wobkenberg, J. Smith, J. M. Ball, G. Adamopoulos, D. D. C. Bradley, and T. D. Anthopoulos, "High-Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere", Adv. Mater. 21, 2226 (2009).
    22. C. Avis and J. Jang, "A High Performance Inkjet Printed Zinc Tin Oxide Transparent Thin-Film Transistor Manufactured at the Maximum Process Temperature of 300°C and Its Stability Test", Electrochemical and Solid-State Letters 14, J9 (2011).
    23. Y. Jeong, K. Song, D. Kim, C. Y. Koo, and J. Moon, "Bias Stress Stability of Solution-Processed Zinc Tin Oxide Thin-Film Transistors", J. Electrochem. Soc. 156, H808 (2009).
    24. C. Y. Koo, K. Song, T. Jun, D. Kim, Y. Jeong, S. H. Kim, J. Ha, and J. Moon, "Low Temperature Solution-Processed InZnO Thin-Film Transistors", J. Electrochem. Soc. 157, J111 (2010).
    25. H. Xu, L. F. Lan, M. Xu, J. H. Zou, L. Wang, D. Wang, and J. B. Peng, "High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique", Appl. Phys. Lett. 99, 253501 (2011).
    26. J. Liu, D. B. Buchholz, R. P. Chang, A. Facchetti, and T. J. Marks, "High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel", Adv Mater 22, 2333 (2010).
    27. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature 432, 488 (2004).
    28. H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C.-C. Wu, "Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states", Appl. Phys. Lett. 92, 133503 (2008).
    29. I.-T. Cho, J.-M. Lee, J.-H. Lee, and H.-I. Kwon, "Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses", Semicond. Sci. Technol. 24, 015013 (2009).
    30. J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, "Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors", Appl. Phys. Lett. 93, 093504 (2008).
    31. J. H. Lee, P. Lin, J. C. Ho, and C. C. Lee, "Chemical solution deposition of Zn1-xZrxO thin films as active channel layers of thin-film transistors", Electrochem. Solid State Lett. 9, G117 (2006).
    32. G. Adamopoulos, S. Thomas, P. H. Wobkenberg, D. D. Bradley, M. A. McLachlan, and T. D. Anthopoulos, "High-mobility low-voltage ZnO and Li-doped ZnO transistors based on ZrO2 high-k dielectric grown by spray pyrolysis in ambient air", Adv Mater 23, 1894 (2011).
    33. Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, "Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel", Appl. Phys. Lett. 84, 2685 (2004).
    34. C.-Y. Tsay, M.-C. Wang, and S.-C. Chiang, "Characterization of Zn1−xMgxO Films Prepared by the Sol–Gel Process and Their Application for Thin-Film Transistors", Journal of Electronic Materials 38, 1962 (2009).
    35. Y. J. Chung, J. H. Kim, U. K. Kim, M. Ryu, S. Y. Lee, and C. S. Hwang, "Study on the Existence of Abnormal Hysteresis in Hf-In-Zn-O Thin Film Transistors under Illumination", Electrochem. Solid State Lett. 14, H300 (2011).
    36. J.-Y. Kwon, J. S. Jung, K. S. Son, K.-H. Lee, J. S. Park, T. S. Kim, J.-S. Park, R. Choi, J. K. Jeong, B. Koo, and S. Lee, "Investigation of Light-Induced Bias Instability in Hf-In-Zn-O Thin Film Transistors: A Cation Combinatorial Approach", J. Electrochem. Soc. 158, H433 (2011).
    37. D. H. Cho, S. Yang, C. Byun, J. Shin, M. K. Ryu, S. H. K. Park, C. S. Hwang, S. M. Chung, W. S. Cheong, S. M. Yoon, and H. Y. Chu, "Transparent Al-Zn-Sn-O thin film transistors prepared at low temperature", Appl. Phys. Lett. 93, 142111 (2008).
    38. E. Chong, Y. S. Chun, and S. Y. Lee, "Effect of Trap Density on the Stability of SiInZnO Thin-Film Transistor under Temperature and Bias-Induced Stress", Electrochem. Solid State Lett. 14, H96 (2011).
    39. K. H. Park, E. Chong, B. K. Ju, and S. Y. Lee, "Effect of Indium Contents on the Solution-Processed SiInZnO Thin Film Transistors Annealed at Low Temperature", Electrochem. Solid State Lett. 14, H491 (2011).
    40. K. Ebata, S. Tomai, Y. Tsuruma, T. Iitsuka, S. Matsuzaki, and K. Yano, "High-Mobility Thin-Film Transistors with Polycrystalline In–Ga–O Channel Fabricated by DC Magnetron Sputtering", Applied Physics Express 5, 011102 (2012).
    41. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "p-channel thin-film transistor using p-type oxide semiconductor, SnO", Appl. Phys. Lett. 93, 032113 (2008).
    42. L. Yan Liang, H. Tao Cao, X. Bo Chen, Z. Min Liu, F. Zhuge, H. Luo, J. Li, Y. Cheng Lu, and W. Lu, "Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities", Appl. Phys. Lett. 100, 263502 (2012).
    43. Dhananjay and C.-W. Chu, "Realization of In2O3 thin film transistors through reactive evaporation process", Appl. Phys. Lett. 91, 132111 (2007).
    44. X. Zou, G. Fang, J. Wan, X. He, H. Wang, N. Liu, H. Long, and X. Zhao, "Improved Subthreshold Swing and Gate-Bias Stressing Stability of p-Type Cu2O Thin-Film Transistors Using a HfO2 High-k Gate Dielectric Grown on a SiO2/Si Substrate by Pulsed Laser Ablation", IEEE Transactions on Electron Devices 58, 2003 (2011).
    45. V. Figueiredo, E. Elangovan, R. Barros, J. V. Pinto, T. Busani, R. Martins, and E. Fortunato, "p-Type CuxO Films Deposited at Room Temperature for Thin-Film Transistors", J Disp Technol 8, 41 (2012).
    46. H. Y. Chong, S. H. Lee, and T. W. Kim, "Effect of an Ultraviolet-Ozone Treatment on the Electrical Properties of Titanium-Oxide Thin-Film Transistors Fabricated by Using a Sol-Gel Process", J. Electrochem. Soc. 159, B771 (2012).
    47. G. Neumann, "On the Defect Structure of Zinc-Doped Zinc-Oxide", Phys Status Solidi B 105, 605 (1981).
    48. A. C. Tickle, Thin-Film Transistors a new approach to microelectronics. (John Wiley & Sons, Inc., New York, 1969), p.34.
    49. C.-P. Lin, B.-Y. Tsui, M.-J. Yang, R.-H. Huang, and C.-H. Chien, "High-performance poly-silicon TFTs using HfO2 gate dielectric", IEEE Electron Device Lett. 27, 360 (2006).
    50. T. M. Pan, C. L. Chan, and T. W. Wu, "High Performance CF4 Plasma-Treated Polysilicon TFTs Using a High-k PrTiO3 Gate Dielectric", Electrochem. Solid State Lett. 12, G44 (2009).
    51. N. G. Cho, D. H. Kim, H. G. Kim, J. M. Hong, and I. D. Kim, "Zinc oxide thin film transistors using MgO-Bi1.5Zn1.0Nb1.5O7 composite gate insulator on glass substrate", Thin Solid Films 518, 2843 (2010).
    52. S. J. Kim, D. H. Yoon, Y. S. Rim, and H. J. Kim, "Low-Temperature Solution-Processed ZrO2 Gate Insulators for Thin-Film Transistors Using High-Pressure Annealing", Electrochem. Solid State Lett. 14, E35 (2011).
    53. H. H. Hsieh and C. C. Wu, "Scaling behavior of ZnO transparent thin-film transistors", Appl. Phys. Lett. 89, 041109 (2006).
    54. K.-C. Liu, J.-R. Tsai, C.-S. Li, P.-H. Chien, J.-N. Chen, and W.-S. Feng, "Characteristics of Transparent ZnO-Based Thin-Film Transistors with High-kDielectric Gd2O3 Gate Insulators Fabricated at Room Temperature", Jpn. J. Appl. Phys. 49, 04DF21 (2010).
    55. J. J. Siddiqui, J. D. Phillips, K. Leedy, and B. Bayraktaroglu, presented at the Device Research Conference (DRC), 2011 69th Annual, 2011 (unpublished).
    56. N.-C. Su, S.-J. Wang, C.-C. Huang, Y.-H. Chen, H.-Y. Huang, C.-K. Chiang, C.-H. Wu, and A. Chin, "The Role of High-κ TiHfO Gate Dielectric in Sputtered ZnO Thin-Film Transistors", Jpn. J. Appl. Phys. 49, 04DA12 (2010).
    57. C. H. Kao, C. S. Lai, W. H. Sung, and C. H. Lee, "The characteristics of fluorinated polycrystalline silicon oxides and thin film transistors by CF4 plasma treatment", Thin Solid Films 519, 919 (2010).
    58. D. Kim, D. Kim, H. Kim, H. So, and M. Hong, "Effect of ammonia (NH3) plasma treatment on silicon nitride (SiNx) gate dielectric for organic thin film transistor with soluble organic semiconductor", Curr. Appl. Phys. 11, S67 (2011).
    59. C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, J.-J. Chang, C.-Y. Wu, and C.-Y. Huang, "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor", Appl. Phys. Lett. 96, 242105 (2010).
    60. Z. Ye and M. Wong, "Characteristics of Plasma-Fluorinated Zinc Oxide Thin-Film Transistors", IEEE Electron Device Lett. 33, 1147 (2012).
    61. Z. Ye and M. Wong, "Characteristics of Thin-Film Transistors Fabricated on Fluorinated Zinc Oxide", IEEE Electron Device Lett. 33, 549 (2012).
    62. J.-W. Park, D. Lee, H. Kwon, and S. Yoo, "Improvement of On-Off-Current Ratio in TiOx Active-Channel TFTs Using N2O Plasma Treatment", IEEE Electron Device Lett. 30, 362 (2009).
    63. J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, and Y. Park, "High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation", Appl. Phys. Lett. 93, 053505 (2008).
    64. H.-C. Chiu, H.-C. Wang, C.-K. Lin, H.-L. Kao, J. S. Fu, and K.-P. Hsueh, "High Breakdown Voltage Enhancement-Mode MgxZn1-xO Thin-Film Transistor Using CF4 Plasma Treatment", Electrochemical and Solid-State Letters 15, H20 (2012).
    65. C. L. Fan, T. H. Yang, C. C. Lin, and C. H. Huang, "N2O-plasma effect on low-temperature deposited gate dielectric for organic thin-film transistors", Electronics Letters 44, 1158 (2008).
    66. K. Remashan, D. K. Hwang, S. D. Park, J. W. Bae, G. Y. Yeom, S. J. Park, and J. H. Jang, "Effect of N2O Plasma Treatment on the Performance of ZnO TFTs", Electrochemical and Solid-State Letters 11, H55 (2008).
    67. M. J. Powell, "The Physics of Amorphous-Silicon Thin-Film Transistors", IEEE Transactions on Electron Devices 36, 2753 (1989).
    68. M. R. Esmaeili-Rad, F. Li, A. Sazonov, and A. Nathan, "Stability of nanocrystalline silicon bottom-gate thin film transistors with silicon nitride gate dielectric", J. Appl. Phys. 102, 064512 (2007).
    69. J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, "Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors", ETRI Journal 31, 62 (2009).
    70. K. H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J. Y. Kwon, B. Koo, and S. Lee, "The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors", Appl. Phys. Lett. 95, 232106 (2009).
    71. M. D. H. Chowdhury, P. Migliorato, and J. Jang, "Light induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors", Appl. Phys. Lett. 97, 173506 (2010).
    72. H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. K. Park, "Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor", Appl. Phys. Lett. 97, 183502 (2010).
    73. B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, "O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors", Appl. Phys. Lett. 97, 022108 (2010).
    74. H.-S. Kim, J. S. Park, W.-J. Maeng, K. S. Son, T. S. Kim, M. Ryu, J. Lee, J. C. Lee, G. Ko, S. Im, and S. Y. Lee, "The Influence of In/Zn Ratio on the Performance and Negative-Bias Instability of Hf-In-Zn-O Thin-Film Transistors Under Illumination", IEEE Electron Device Lett. 32, 1251 (2011).
    75. H. Oh, S. H. K. Park, C. S. Hwang, S. Yang, and M. K. Ryu, "Enhanced bias illumination stability of oxide thin film transistor through insertion of ultrathin positive charge barrier into active material", Appl. Phys. Lett. 99, 022105 (2011).
    76. S. J. Seo, J. H. Jeon, Y. H. Hwang, and B. S. Bae, "Improved negative bias illumination instability of sol-gel gallium zinc tin oxide thin film transistors", Appl. Phys. Lett. 99, 152102 (2011).
    77. A. M. E. Raj, M. Jayachandran, and C. Sanjeeviraja, "Fabrication techniques and material properties of dielectric MgO thin films—A status review", CIRP Journal of Manufacturing Science and Technology 2, 92 (2010).
    78. A. Ide-Ektessabi, H. Nomura, N. Yasui, and T. Tsukuda, "Ion beam processing of MgO thin films", Thin Solid Films 447, 383 (2004).
    79. T. L. Chen, X. M. Li, and S. Zhang, "Enhanced strain relaxation induced by epitaxial layer growth mode of MgO thin films", Solid State Commun. 131, 523 (2004).
    80. W.-Y. Hsu and R. Raj, "MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3", Appl. Phys. Lett. 60, 3105 (1992).
    81. Z. Lu, R. S. Feigelson, R. K. Route, S. A. DiCarolis, R. Hiskes, and R. D. Jacowitz, "Solid source MOCVD for the epitaxial growth of thin oxide films", J. Cryst. Growth 128, 788 (1993).
    82. S. H. Rhee, Y. Yang, H. S. Choi, J. M. Myoung, and K. Kim, "Low-temperature deposition of highly [100]-oriented MgO films using charged liquid cluster beam", Thin Solid Films 396, 23 (2001).
    83. G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations", J. Appl. Phys. 89, 5243 (2001).
    84. A. Gibson, R. Haydock, and J. P. LaFemina, "Stability of vacancy defects in MgO: The role of charge neutrality", Physical review. B, Condensed matter 50, 2582 (1994).
    85. K. Xiong, J. Robertson, M. C. Gibson, and S. J. Clark, "Defect energy levels in HfO2 high-dielectric-constant gate oxide", Appl. Phys. Lett. 87, 183505 (2005).
    86. F. A. Kröger, The Chemistry of Imperfect Crystals, 2nd ed. (Amsterdam North-Holland Pub. Co, New York, 1974), p.73.
    87. J. H. Noh, C. S. Kim, S. Y. Ryu, and S. J. Jo, "Low-Voltage-Driven Bottom-Gate Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistors with High Dielectric Constant Oxide/Polymer Double-Layer Dielectric", Jpn. J. Appl. Phys. 46, 4096 (2007).
    88. K. Choi, D. K. Hwang, K. Lee, J. H. Kim, and S. Im, "Pentacene thin-film transistors with polymer/TiOx double-layer dielectrics operating at 3 V", Electrochem. Solid State Lett. 10, H114 (2007).
    89. D. A. Neamen, Semicondor Physics & Devices, Third Edition ed. (McGraw Hill, New York, 2003).
    90. L. Yan, C. M. Lopez, R. P. Shrestha, E. A. Irene, A. A. Suvorova, and M. Saunders, "Magnesium oxide as a candidate high-kappa gate dielectric", Appl. Phys. Lett. 88, 142901 (2006).
    91. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed. (Prentice-Hall, Englewood Cliffs, 2001), p.170.
    92. J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, "Reactive-Sputter-Deposited Tin Films on Glass Substrates", Thin Solid Films 197, 117 (1991).
    93. T. Nakamura, H. Minoura, and H. Muto, "Fabrication of ZnO(0001) epitaxial films on the cubic(111) substrate with C6 symmetry by pulsed laser ablation", Thin Solid Films 405, 109 (2002).
    94. Y. F. Chen, S. K. Hong, H. J. Ko, V. Kirshner, H. Wenisch, T. Yao, K. Inaba, and Y. Segawa, "Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch", Appl. Phys. Lett. 78, 3352 (2001).
    95. B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, "Stable, solution-processed, high-mobility ZnO thin-film transistors", J Am Chem Soc 129, 2750 (2007).
    96. E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, "Recent advances in ZnO transparent thin film transistors", Thin Solid Films 487, 205 (2005).
    97. W. S. Lau, K. K. Khaw, P. W. Qian, N. P. Sandler, and P. K. Chu, "A Comparison of Defect States in Tantalum Pentoxide (Ta2O5) Films after Rapid Thermal Annealing in O2 or N2O by Zero-Bias Thermally Stimulated Current Spectroscopy", Jpn. J. Appl. Phys. 35, 2599 (1996).
    98. K. A. McKinley and N. P. Sandler, "Tantalum pentoxide for advanced DRAM applications", Thin Solid Films 290, 440 (1996).
    99. W. S. Lau, P. W. Qian, N. P. Sandler, K. A. McKinley, and P. K. Chu, "Evidence thatN2Ois a Stronger Oxidizing Agent than O2for the Post-Deposition Annealing of Ta2O5on Si Capacitors", Jpn. J. Appl. Phys. 36, 661 (1997).
    100. J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, "High ε gate dielectrics Gd2O3 and Y2O3 for silicon", Appl. Phys. Lett. 77, 130 (2000).
    101. M. T. Thomas, "Preparation and Properties of Sputtered Hafnium and Anodic HfO2 Films", J. Electrochem. Soc. 117, 396 (1970).
    102. M. Balog, M. Schieber, M. Michman, and S. Patai, "Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds", Thin Solid Films 41, 247 (1977).
    103. F. Torricelli, J. R. Meijboom, E. Smits, A. K. Tripathi, M. Ferroni, S. Federici, G. H. Gelinck, L. Colalongo, Z. M. Kovacs-Vajna, D. de Leeuw, and E. Cantatore, "Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors Part I: Long-Channel Devices", IEEE Transactions on Electron Devices 58, 2610 (2011).

    下載圖示 校內:2018-09-09公開
    校外:2018-09-09公開
    QR CODE