簡易檢索 / 詳目顯示

研究生: 吳慶應
Wu, Ching-in
論文名稱: 矽薄膜堆疊式太陽能電池之製作及特性探討
Investigation and Fabrication of Silicon Thin-Film Tandem Solar cell
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 110
中文關鍵詞: 衰減率矽薄膜太陽能電池漸層式非晶矽本質層固化劑
外文關鍵詞: degradation, Si thin film solar cells, graded amorphous intrinsic layer, hardener
相關次數: 點閱:133下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以調整非晶矽本質層的製程條件調整以達到高效率以及高可靠性的矽薄膜堆疊式太陽能電池。在矽薄膜堆疊式太陽能電池技術中,已經廣為人知的是調整適當的氫氣比例與矽甲烷混合後使用在製造非晶矽本質層中用來對抗衰減劣化的發生。但是,若只是單純的調整氫氣比例在製造五代線這樣大尺寸的矽薄膜堆疊式太陽能電池中的非晶矽本質層時,卻無法有效的減少其衰減比例,主要原因在較高的氫氣混合比時,容易造成機台在成長本質層時,電漿傷害到本質層前電洞導電層的界面。為了解決這個問題,我們在稍後的章節裡提出漸層式的本質層形成方法可有效減少其衰減率達2%。但較高的氫氣混合比在形成非晶矽本質層有較低的成長速率,研究中提供了一個系統化的方法去找出適當的氣體混合比以提升生產效率但又不犧牲太陽能電池衰減率,我們可以減少製程氣體40%的耗費,提升30%的生產效率。
    在透明矽薄膜堆疊式太陽能電池的製造技術中,我們另外發現了添加固化劑在模組中的的透明矽薄膜堆疊式太陽能電池, IEC規範的測試週期達六個週期時,透明矽薄膜堆疊式太陽能模組的模組效率僅衰減了6%。

    In the dissertation we approached the higher efficiency and reliable thin film tandem silicon solar cell with amorphous intrinsic layer tuning process.
    For silicon thin-film solar cell, it is well known that one of the most important methods for preparing amorphous silicon doped with hydrogen (a-Si:H) with good stability against light soaking degradation is by properly tuning H2 dilution ratio in the intrinsic i-layer. However, it is hard to improve the longevity of Gen. 5 silicon thin-film tandem module by manipulating the H2 ratio within one i-layer alone because hydrogen treatment could easily compromise the front P-layer by PECVD. To solve this problem, we propose the “graded i-layer” method which incorporates multiple i-layers with different of hydrogen dilution ratios in place of the original single i-layer . By this method, the solar cell could provide higher initial power and the degradation ratio of the module could be reduced by approximately 2% comparing to the module with single i-layer. However, it has been observed that increasing hydrogen dilution has the undesirable effect of slowing down the deposition rate of the intrinsic layer, which reduce the efficiency of production. To counter this problem, we have designed a systematic approach to enhance the utilization rate of the feedstock gas, Silane. By our method, consumption of feedstock gas can be reduced by more than 40% and deposition rate of the intrinsic layer can be increased by 30% compared to the method of only increasing the hydrogen dilution without sacrificing module performance and stability.
    For see through module, we found adding hardener into the conventional see-through tandem modules, that the efficiency degraded only by 6.0% for the see-through tandem modules with hardener, after 6 IEC cycles.

    Abstract (Chinese) .......I Abstract (English) .......II Acknowledgement........IV Contents............V Table Captions........VII Figure Captions........VIII Chapter 1 Introduction.........1 1.1 Background.........1 1.2 Overview of the Dissertation.......3 Chapter 2 Theory and Experiments ......5 2.1 Theory of Tandem Solar cell........5 2.2 Experimental tools........... 12 2.2.1 LPCVD for forming TCO....... . 13 2.2.2 PECVD for forming thin film silicon solar cell.... 16 2.2.3 Laser scribing for designing the connection of solar cell.. .. 20 2.2.4 Backend......... .. 21 Chapter 3 Method for Improving Longevity of Silicon Thin-film Tandem Solar Cell by Graded i-layer........39 3.1 Introduction.......... 39 3.2 Experiments......... . 40 3.3 Results and Discussion....... ... 43 3.4 Summary.......... 49 Chapter 4 Method for Forming Low Cost Amorphous Intrinsic Layer of Thin Film Silicon Solar Cell........54 4.1 Introduction........ .54 4.2 Experiments........ .. .55 4.3 Results and Discussion....... .. .57 4.4 Summary......... .62 Chapter 5 See-Through Si Thin-film Tandem Solar Cell Module with Hardener...66 5.1 Introduction........ .. .66 5.2 Experiments........ .. .68 5.3 Results and Discussion........ .. .71 5.4 Summary......... .77 Chapter 6 Conclusion and Future work......85 6.1 Conclusion........ ..85 6.2 Future works..........86 Reference ..........89

    [1.] Daryl M Chapin, Calvin S Fuller, Gerald L Pearson, “Solar energy converting apparatus”, US2780765 A, 1954.
    [2.] M. Kondo et al., “Key issues for fabrication of high quality amorphous and microcrystalline silicon solar cells,” Thin Solid Films, vol. 501, pp. 243–246, 2006.
    [3.] J. Meier et al., “Microcrystalline/micromorph silicon thin-"lm solar cells prepared by VHF-GD technique,” Sol. Energy Mater.Sol. Cells, vol. 66, pp. 73, 2001.
    [4.] K. Yamamot et al., “Large area thin film Si module,” Sol. Energy Mater. Sol. Cells, vol. 74, pp. 449, 2002.
    [5.] O. Vetterl et al., “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 62, pp. 97, 2000.
    [6.] B. Rech et al., “Microcrystalline silicon for large area thin film solar cells,”Thin Solid Films., vol 427, Issues 1–2, pp.157, 3 March 2003
    [7.] D. L. Staebler et al., “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett., vol. 31, pp.292, 1977.
    [8.] A. Matsuda et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate,” Solar Energy Materials and Solar Cells, vol. 78, no. 1–4, pp. 3, July 2003.
    [9.] A. Hadjadj et al., “In situ ellipsometry study of the kinetics of hydrogen plasma interaction with a-Si:H thin films: A particular temperature-dependence,” Appl. Phys. Lett., vol. 97, pp 211906, 2010.
    [10.] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N.Wyrsch, U. Kroll,C. Droz and J. Bailat, “Thin-film Silicon Solar Cell Technology”, Prog. Photovolt: Res. Appl. 12:113–142, 2004.
    [11.] A. Gordijn et al., “At the limit of total silane gas utilization for preparation of high-quality microcrystalline silicon solar cells at high-rate plasma deposition”, Appl. Phys. Lett. 31 pp. 211501, 2011
    [12.] Akihisa Matsuda et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials & Solar Cells 78 pp.3, 2003
    [13.] Tomonori Nishimoto et al., “Amorphous silicon solar cells deposited at high growth rate”, Journal of Non-Crystalline Solids 299–302 pp. 1116–1122, 2002

    [14.] Akihisa MATSUDA, “Thin-Film Silicon —Growth Process and Solar Cell Application”, Japanese Journal of Applied Physics Vol. 43, No. 12, pp. 7909–7920, 2004.
    [15.] A. Kerrouche, D. A. Hardy, D. Ross, and B. S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV”, Sol. Energy Mater. Sol. Cells, vol. 122, pp. 99-106, 2014.
    [16.] Y. Yang, P. G. O'Brien, G. A. Ozin and N. P. Kherani, “See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics”, Appl. Phys. Lett., vol. 103, Art. 221109, 2013.
    [17.] V. Steckenreiter, R. Horbelt, D. N. Wright, M. Nese and R. Brendel, “Qualification of encapsulation materials for module-level-processing”, Sol. Energy Mater. Sol. Cells, vol. 120, pp. 396-401, 2014.
    [18.] X. Xu, K. Lord, G. Pietka, F. Liu, K. Beernink, B. Yan, C. Worrel, G. DeMaggio, A. Banerjee, J. Yang and S. Guha "High efficiency ultra lightweight a-Si:H/a-SiGe:H/a-SiGe:H triple junction solar cells on polymer substrate using roll-to-roll technology", 33rd IEEE PVSC, pp.6, 2008
    [19.] Xiao Y.G., Uehara K., Lestrade M., Li Z.Q., Li Z.Q., “MOdeling of SI-based thin film triple-junction solar cells”, Photovoltaic Specialists Conference (PVSC), 34th IEEE, pp. 002154 – 002158, 2009
    [20.] Ferhati H., Djeffal F., Kacha K., Arar D., “High efficiency amorphous triple-junction thin-film SiGe solar cells incorporating multi-trench region”, Systems and Control (ICSC), 4th International Conference ,pp. 274 – 277, 2015
    [21.] J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty and J. T. Kiehl, "High-efficiency GainP/GaAs/lnGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction", Appl. Phys. Lett, vol. 91, pp.023502, 2007
    [22.] J. Yang, A. Banerjee and S. Guha, "Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies", Appl. Phys. Lett., vol. 70, pp.2975 -2977, 1997
    [23.] B. Yan, G. Yue, J. Yang and S. Guha, "Correlation of current mismatch and fill factor in amorphous and nanocrystalline silicon based high efficiency multi-junction solar cells", 33rd IEEE PVSC, pp.6, 2008

    [24.] M. Hermle, S. P. Philipps, G. Letay and A. W. Bett "Numerical simulation of tunnel diodes and multi-junction solar cells", 33rd IEEE PVSC, pp.4, 2008
    [25.] Baojie Yan, Guozhen Yue, Owens Jessica M., Yang J., Guha S., “Over 15% Efficient Hydrogenated Amorphous Silicon Based Triple-Junction Solar Cells Incorporating Nanocrystalline Silicon”, Photovoltaic Energy Conversion, Conference Record of the IEEE 4th World Conference, pp. 1477 – 1480, 2006
    [26.] S. Guha, J. Yang and B. Yan "High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon", Solar Energy Materials & Solar Cells, vol. 119, pp.1 -11, 2013
    [27.] S.T. Chang, M.H. Liao and W.K. Lin, "Si/SiGe hetero-junction solar cell with optimization design and theoretical analysis", Thin Solid Films, vol. 519, pp.5022 -5025, 2011
    [28.] Liu F., Beernink K., Hu C., Xu X., Banerjee A., DeMaggio G., Pietka G., Yang J., Guha S., “Coating and interconnect development for a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cells on polymer substrate for space and stratospheric applications”, Photovoltaic Specialists Conference, PVSC '08. 33rd IEEE,pp. 1 – 6, 2008.
    [29.] Banerjee A., Liu F.S., Beglau D., Tining Su, Pietka G., Yang J., Guha S., “12.0% Efficiency on Large-Area, Encapsulated, Multijunction nc-Si:H-Based Solar Cells”, Photovoltaics, IEEE Journal of, Volume: 2, Issue: 2, pp. 104 – 108, 2012.
    [30.] A. Banerjee, T. Su, D. Beglau, G. Pietka, F. Liu, S. Almutawalli, B. Yan, J. Yang and S. Guha, "High efficiency, large area, nanocrystalline silicon based, triple-junction solar cells", Proc. Mat. Res. Soc. Symp., vol. 1321, pp.3 -8, 2011
    [31.] Das C., Cao Xinmin, Wenhui Du, Xiesen Yang, Yasuaki Ishikawa, Xunming Deng, “Effects of hydrogen dilution grading in active layer on performance of nanocrystalline single junction bottom component and corresponding a-Si:H based triple junction solar cells”, Photovoltaic Energy Conversion, Conference Record of the IEEE 4th World Conference on, Volume: 2, pp. 1504 – 1506, 2006.
    [32.] Wronski C.R., Xinwei Niu, “ The Limited Relevance of SWE Dangling Bonds to Degradation in High-Quality a-Si:H Solar Cells”, Photovoltaics, IEEE Journal of (Volume:4 ,Issue: 3), pp.778 – 784
    [33.] M. Gunes and C. R. Wronski, "Differences in the densities of charged defect states and the kinetics of Staebler-Wrosnki effect in undoped hydrogenated amorphous silicon thin films", J. Appl. Phys., vol. 81, pp.3526, 1997
    [34.] P. Stradins, "Staebler-Wronski defects: Creation efficiency, stability, and effect on a-Si:H Cell degradation", Proc. 35th IEEE Photovoltaic Spec. Conf., pp.142 -146, 2010
    [35.] A. H. M. Smets, W. M. M. Kessels and M. C. M. van Sanden "Vacencies and voids in hydrogenated amorphous silicon", Appl. Phys. Lett., vol. 82, pp.1547, 2003
    [36.] J. J. Liang, E. A. Schiff, S. Guha, B. Yan and J. Yang, "Light-soaking effects on the open-circuit voltage of a-Si:H solar cells", Mater. Res. Soc. Symp. Proc., vol. 862, pp.A13.6.1, 2005
    [37.] J. Melskens, A. H. M. Smets, M. Schouten, S. W. H. Eijt, H. Schut and M. Zeman, "New insights in the nanostructure and defect states of hydrogenated amorphous silicon obtained by annealing", IEEE J. Photovoltaics, vol. 3, no.1, pp.65 -71, 2013
    [38.] A. H. M. Smets, C. R. Wronski, M. Zeman and M. C. M. van Sanden "The Staebler-Wronski effect: New physical approaches and insight as a route to reveal its origin", Mater. Res. Soc. Symp. Proc., vol. 1245, pp.43, 2010
    [39.] J. Melskens, A. H. M. Smets, S. W. H. Eijt, H. Schut, E. Bruck and M. Zeman, "Nanostructural analysis of hydrogenated silicon films on positron annihilation studies", J. Non. Cryst. Solids, vol.358, pp.2015 -2018, 2012
    [40.] H. Kakinuma, "Thickness dependence of Staebler-Wronski effect in a-Si:H", Journal of Non-Crystalline Solids, Vol. 59-60, pp. 421-424, 1983.
    [41.] M. Zeman, J.A. Willemen, L.L.A. Vosteen, G. Tao, and J. W. Metselaar, "Computer modelling of current matching in a-Si:H/a-Si:H tandem solar cells on textured TCO substrates", Solar Energy Materials and Solar Cells, Vol. 46, pp. 81-99, 1997.
    [42.] T.R. Betts, C.N. Jardine, R. Gottschalg, D.G. Infield, and K. Lane, "Impact of spectral effects on the electrical parameters of multijunction amorphous silicon cells", in Proceedings of 3rd world conference on Photovoltaic Energy Conversion, 2003.
    [43.] J. Muller, B. Rech, J. Springer and M. Vanecek, "TCO andlight trapping in silicon thin film solar cells", Sol. Energy, vol. 77, pp.917 -930, 2004
    [44.] W. Lin, R. Ma, W. Shao and B. Liu, "Structural,electrical and optical properties of Gd doped and undoped ZnO:Al (ZAO) thin films prepared by RF magnetronsputtering", Appl. Surf. Sci., vol. 253, pp.5179 -5183, 2007
    [45.] Z. A. Wang, J. B. Chu, H. B. Zhu, Z. Sun, Y. W. Chen and S. M. Huang "Growth of ZnO:Al films by RF sputtering at room temperature for solar cellapplications", Solid-State Electron., vol. 53, pp.1149 -1153, 2009
    [46.] J. Kim, J. H. Yun, Y. C. Park and W. A. Anderson, "Transparent and crystalline Al-dopedZnO film-embedded heterojunction Si solar cell", Mater. Lett., vol. 75, pp.99 -101, 2012
    [47.] D. Song, A. G. Aberle and J. Xia, "Optimisation of ZnO:Al films by change ofsputter gas pressure for solar cell application", Appl. Surf. Sci., vol. 195, pp.291 -296, 2007
    [48.] Y. Z. Tsai, N. F. Wang, M. R. Tseng and F. H. Hsu "Transparentconducting Al and Y codoped ZnO thin film deposited by DC sputtering", Mater. Chem.Phys., vol. 123, pp.300 -303, 2010
    [49.] M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig and B. Rech "The effect of front ZnO:Al surface textureand optical transparency on efficient light trapping in silicon thin-film solar cells", J.Appl. Phys., vol. 101, pp.074903-1 -074903-8, 2007

    [50.] C. H. Yang, "Hydrogenated amorphous siliconsolar cells on textured flexible substrate copied from a textured glass substrate template", IEEE Trans. Electron Devices, vol. 32, pp.1254 -1256, 2011

    [51.] Feist R., Mills M., Ramesh N., “Methodology for delivering reliable CIGS based building integrated photovoltaic (BIPV) products”, Reliability Physics Symposium (IRPS), IEEE International, pp.4A.1.1 - 4A.1.4, 2012.
    [52.] Davis M.W., Fanney A.H., Dougherty B.P., Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, pp. 1642 – 1645, 2002.
    [53.] Ruther R., "The performance of a fully - monitored, double-junction a-Si grid-connected BIPV system after four years of continuous operation in Brazil", Photovoltaic Specialists Conference, 2002

    下載圖示 校內:2018-02-16公開
    校外:2021-02-16公開
    QR CODE