簡易檢索 / 詳目顯示

研究生: 張維哲
Chang, Wei-Che
論文名稱: 土壤取樣方式對低塑性粉土質砂動態性質探討
The Influence of Soil Sampling on Dynamic Properties of Low Plastic Silty Sands
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 157
中文關鍵詞: 低塑性粉土動態性質液化後體積應變Gel Push取樣器
外文關鍵詞: Low-plasticity silt, Dynamic Properties, Post-liquefaction volumetric strain, Gel Push sampler
相關次數: 點閱:227下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣西南部地區土層常見之細粒料為低塑性粉土,其擁有高敏感度及易受擾動使土壤強度弱化之特性,且結構鬆散、顆粒脆弱及土壤承載力不佳,易造成土層大量沉陷。因此種土樣的特殊性質,使得以往取樣工法除了在取樣過程中容易對土樣產生擾動外,取樣後試體保存也容易造成細粒料含量流失等現象。
    高品質低擾動Gel Push取樣器(簡稱GP取樣器)能針對薄管取樣工法之缺點進行修正外,相較於傳統之冰凍工法,其施作成本較為低廉,且試體品質更高。故本研究於台南新化地區分別以兩種取樣工法取得原狀試體,探討不同取樣工法對於土樣品質之影響及其二者液化阻抗之強弱,並對未來在高敏感性土壤之取樣方法與工程設計參數提出建議。
    本研究結果顯示,在相同控制條件下,傳統薄管取樣時因薄管壁面與土樣間產生摩擦並有壓縮之現象,使得薄管試體相對密度上升並導致抗液化強度變高。GP取樣試體在薄管內外壁皆使用高分子聚合液潤滑來減少摩擦,降低對土樣產生之擾動,較符合現地土壤之原始強度,且切削靴裝置可大大提昇敏感土層之取樣率;又原狀試體之抗液化強度皆高於重模試體;在液化後體積應變方面,液化後原狀試體所排出之體積皆來得較重模試體少。基於上述理由,若以重模試體進行工程設計,其設計參數將過份保守。
    此外,本研究彙整台灣西南部各地之粉土質砂進行探討,期望能更了解其特殊性質對於工程設計與參數選定之影響,有利於大地工程師處理含有此種土壤之地區的工程問題。

    The soil strata in southwestern Taiwan are dominant in fine-grained low plasticity silt with high sensitivity. The soils are with features of high sensitivity, low strength and under-consolidated structure. The traditional soil sampling would lead to the disturbance of soil sample and the fine content of soil may lose during of sample storage.
    In this study, the Gel Push sampler is developed to mitigate the sample disturbance during the soil sampling. As compared to the traditional freezing method, Gel Push sampler features lower cost and can obtain high quality samples. This study employed the above two methods for sampling at Sinhua Township, Tainan County, and discussed the impacts of the two different methods on soil quality and liquefaction resistance stress.
    The results indicated that the traditional thin wall tube increased the relative density and liquefaction stress of sample due to friction of the tube during sampling. Besides the thin wall tube, the Gel Push sampler are added with high polymer liquid to reduce friction and disturbance during sampling, so that the conditions of samples are close to those if the field. Moreover, cutting boot device of the Gel Push sampler could increase the sampling rate for sensitive soil strata; the liquefaction resistance stress of original samples are higher than remolded samples; for post-liquefaction volumetric strain, the volume of original samples is smaller than remolded samples.
    In addition, this study summarized the soil conditions in soil strata in the southwestern area of Taiwan, it expects to provide the important information for design and construction in this area.

    摘要 I Abstract III 誌謝 V 目錄 IX 表目錄 XIII 圖目錄 XV 照片目錄 XIX 第一章 緒論 1 1-1研究背景 1 1-2研究動機 1 1-3研究內容 3 1-4研究流程 4 第二章 文獻回顧 7 2-1液化行為 7 2-1-1土壤液化機制與定義 7 2-1-2反覆荷重下破壞準則定義 9 2-1-3砂土承受反覆荷重下之行為 10 2-2土壤液化阻抗之影響因素 11 2-3砂顆粒結構假想 19 2-4細粒料含量對土壤液化潛能之影響 21 2-4-1試體乾密度維持定值 21 2-4-2試體相對密度維持定值 25 2-4-3細粒料塑性程度對動態強度之影響 29 2-4-4孔隙比區間和細粒料含量之關係 33 2-5液化後體積應變 34 2-6重模製作方式 37 第三章 試驗計畫及試驗設備 41 3-1場址介紹 41 3-2試驗內容 44 3-3取樣方法介紹 45 3-3-1傳統薄管取樣 45 3-3-2粉土質砂之低擾動新式取樣 47 3-4試驗儀器與設備 51 3-5試驗步驟 57 3-5-1儀器校正 57 3-5-2儀器土樣準備 57 3-5-3試體飽和 61 3-5-4試體壓密 61 3-5-5動態加載 61 3-5-6體積應變試驗 62 3-5-7資料處理 62 3-6研究方法之控制條件 63 3-6-1動力三軸剪力試驗之特性 63 3-6-2前期微震效應 65 第四章 試驗結果與分析 67 4-1試驗土樣基本性質 67 4-2反覆動態三軸試驗結果分析 83 4-2-1試體液化破壞之定義 83 4-2-2試體受反覆應力下的變形行為 87 4-2-3試體受反覆應力下孔隙水壓之變化 93 4-2-4軸差應力與軸向應變之變化 96 4-3土樣品質與抗液化強度關係 99 4-4土壤液化後體積應變之探討 107 4-5黏土夾層對動態行為之影響 111 第五章 粉土動態性質蒐整 115 5-1台灣西南部地區粉質砂土性質彙整 115 5-1-1資料蒐集與簡介 115 5-1-2土壤基本物理性質匯整 116 5-2影響粉土抗液化強度因素之探討 121 5-2-1細粒料含量對抗液化強度之影響 121 5-2-2相對密度對抗液化強度之影響 126 5-2-3抗液化強度衰減率與細粒料含量之關係 133 5-3粉土質砂之孔隙比性質 135 5-3-1孔隙比區間與細粒料含量之關係 135 5-3-2液化後體積應變與孔隙比區間之關係 138 第六章 結論與建議 143 6-1結論 143 6-2建議 147 參考文獻 149 作者簡歷 157

    1.王春煌、郭漢興、王如龍,「標準貫入試驗打擊能量差異性探討」,地工技術,第16期,第14-22頁(1986)。
    2.吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期 ,第39-70頁(1979)。
    3.吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁(1987)。
    4.李維峰,「土壤液化防治之研究與發展趨勢」,地工技術,第103期,第89-91頁,3月(2005)。
    5.李維峰、王淳讙、梅興泰、簡臣佑,「不擾動取樣器中日開發問世」,營建知訊,第287期,38-45頁。
    6.林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程系研究所,碩士論文(2006)。
    7.施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,國立成功大學土木工程系研究所,碩士論文(2009)。
    8.孫家雯,「砂土細料界定對液化強度之影響」,國立台灣大學土木工程研究所,碩士論文(2003)。
    9.張浼珣,「初步液化潛能分區法之研究」,國立成功大學土木工程系研究所,碩士論文(2005)。
    10.許明同,「台灣地區有感地震次數與震度之關係」,氣象學報告第十六卷第二期,第31-35頁。
    11.許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程系研究所,碩士論文(2003)。
    12.陳名利,「以剪力模數評估砂土液化潛能之研究」,國立台灣工業技術學院工程技術研究所營建工程組,碩士論文(1990)。
    13.陳界文,「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文(2001)。
    14.陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文(1999)。
    15.游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功  大學土木工程系研究所,碩士論文(2007)。
    16.黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森, 「台灣中西部粉土細砂液化行為分析」, 地工技術, 第103期, 第5-30頁(2005)。
    17.楊騰芳,「細粒料在過壓密及前期微震作用下對飽和殺性土壤液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文(1986)。
    18.廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程系研究所,碩士論文(2005)。
    19.戴源昱,「台灣西南部粉土質細砂CRR與qc關係之標定」,國立交通大學土木工程研究所,碩士論文(2007)。
    20.Castro, G., “Liquefaction and cyclic mobility of saturated sands”, Journal of the Geotechnical Engineering Division, Vol. 101, No. GT6, pp.551-569(1975).
    21.Chaney, R. C., “Saturation effects on the cyclic strength of sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol.1, pp. 342-358 (1978).
    22.Chang, N.Y., Yeh, S.T. and Kaufman, L. P., “Liquefaction potential of clean and silty sands,” Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032 (1982).
    23.Cubrinovski, M. and Ishihara, K., “Empirical correlation between SPT N-value and relative density for sandy soils”, Soils and Foundations, Vol. 39, No. 6, pp.61-71(1999).
    24.Cubrinovski, M. and Ishihara, K., “Maximum and minimum void ratio characteristics of sands,” Soils and Foundations, Vol.42, No.6, pp.65-78(2002).
    25.Erten, D., and Maher, M.H. “Cyclic undrain behavior of silty sand.”Soil Dynamics and Earthquake Engineering, Vol.14, pp. 115-123(1995).
    26.Finn, W. D. L., Pickering, D. J., and Bransby, P. L., “Sand Liquefaction in Triaxial and Simple Shear Test, ” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97,No. SM4, pp. 639-659(1971).
    27.Finn, W.D. and Barsty , D.T., “Effect of Strain History on Liquefaction of Sand”, JSMFD , ASCE, June , pp.1917-1934(1970).
    28.Hardin, B.O., Richart Jr., F.E., , "Elastic Wave Velocity in Granular Soils", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65(1963).
    29.Hazen, A.,“Hydraulic fill dams”ASCE,Vol.83,pp. 1713-1745(1920).
    30.Høeg, K., Dyvik, R., and Sandbaekken, G., “Strength of undisturbed versus reconstituted silt and silty sand specimens,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.7, pp.606-617 (2000).
    31.Ishibashi, I. M., Sherlif, M. A., and Cheng, W. L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,”Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48 (1982).
    32.Ishihara, K. ,“Stability of Natural Deposits during Earthquakes”, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1,pp.321-376(1985).
    33.Ishihara, K. and Yoshimi, M.,“Evaluation of Settlement in Sand Deposits Following Shear Loading”, Soils and Foundations, Vol.32,No.1 ,pp178-188(1992).
    34.Ishihara, K.,“Liquefaction and Flow Failure During Earthquakes”, Geotechnique, Vol.43, No.3, pp.315-415(1993).
    35.Kuerbis, R., Nequssey, D., and Vaid, Y. P., “Effect of Gradation and Fines Content on the Undrained Response of Sand,” Geotechnical Special Publication, No. 21, ASCE, pp. 330-345 (1988).
    36.Lee, K.L., and Albaisa, A., “Earthquake Induced Settlements in Saturated Soil,” Vibration Effects of Earthquake on Soil and Foundations , ASTM, STP 450, pp.71-96 (1969).
    37.Marcuson, W. F., “Definition of Term Related to Liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 565-588.(1978).
    38.Mulilis, J. P., “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center (1975).
    39.Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan, K., “Effects of sample preparation on sand liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT2, pp.91-108 (1977).
    40.Nagase, H. and Ishihara, K., "Liquefaction-Induced Compaction and Settlement of Sand During Earthquakes," Soils and Foundations, Vol. 28, No. 1, pp. 65-76(1988).
    41.Peacock, W. H., and Seed, H. B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions, “Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, SM3, pp. 689-708(1968).
    42.Saxena,S.K.,Helberg, J., Ladd, C.C., “Geotechnical Properties of Hackensack Valley Varved Clays of New Jersey,”Geotechnical Testing Journal,VOL.1,NO.3,pp148(1978).
    43.See, H. B., Idriss, I.M. and Arango, I.,“Evaluation of liquefaction potential using field performance data”,Journal of Geotechnical Engineering, ASCE, Vol.109, No.GT3, pp.458-82(1983).
    44.Seed, H. B., and Lee, K. L., “Liquefaction of saturated sands during cyclic loading ”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
    45.Seed, H. B., and Lee, K. L., “Liquefaction of saturated sands during cyclic loading, ” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
    46.Seed, H. B., Idriss, I. M., Makdidi, F., and Banerjee, N., “Representation of Irregular Stress-Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis,” Report No. EERC 75-29, Earthquake Engineering Research Center, University of California at Berkeley(1975).
    47.Seed, H. B., Mori, K. and Chan, C. k.,“Influence of Seismic History on Liquefaction of Sands”,Journal of Geotechnical Engineering Division, ASCE, Vol.103, No.GT4, pp.246-270(1977).
    48.Seed, H.B., “Evaluation of soil liquefaction effects on level ground during earthquakes,“ Liquefaction problems in geotechnical engineering”, pp. 1-104 (1976).
    49.Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M.,“Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Journal of Geotechnical Engineering,4SCE,Vol.111,NO.12, pp.1425-1445(1985) .
    50.Seed, R. B., and Harder, L. F.,“SPT-Based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength”, in J.M. Duncan ed., Proceedings, H. Bolton Seed Memorial Symposium, University of California, Berkeley, California, Vol.2, pp.351-376(1990).
    51.Terzaghi, k.,“Erdbaumechnic auf bodenphysikalisher groundage ”, Franz Deuticke,Vienna(1925).
    52.Tianqiang Guo, Shamsher Prakash., “Liquefaction of Silts and Silt-Clay Mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, pp. 706-710 (1999).
    53.Tsukamoto, Y., Ishihara, K. and Sawada, S., “”Settlement of silty sand deposits following liquefaction during earthquakes,” Soils and Foundations, Vol. 44 No. 5, PP.135-148(2004).
    54.Vaid, Y. P., Chern, J. C., AND Tumi, H., “Confining Pressure, Grain Angularity and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1229-1235 (1985).
    55.Wong, R.T., Seed, H.B., AND Chan, C.K. “Cyclic Loading Liquefaction of Gravelly Soils,“ Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 101. No. GT6, pp. 571-583 (1975).
    56.Yamamuro, J. A., AND Poul V. Lade, “Experiments and Modeling of Silty Sands Susceptible to Static Liquefaction,” Mechanics of Cohesive-Frictional Meterials, Vol. 4, pp. 545-564(1999).
    57.Yamamuro, J.A., AND Kelly, M., “Monotonic and cyclic liquefaction of very loose sands with high silt content,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 314-323 (2001).
    58.Yoshimi, Y., and Ohoka, H., “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand”, Soils and Foundations, JSSMFE, Vol.15, No.3, pp.27-40(1975).
    59.Yoshimi, Y., Tokimatsu, K., and Ohara, J., “In situ liquefaction resistance of clean sands over a wide density range,” Geotechnique 44, No.3, pp.479-494 (1994).

    下載圖示 校內:2015-08-24公開
    校外:2015-08-24公開
    QR CODE